TP53 Mutation Estimation Based on MRI Radiomics Analysis for Breast Cancer

乳腺癌 随机森林 无线电技术 接收机工作特性 支持向量机 线性判别分析 医学 逻辑回归 磁共振成像 人工智能 癌症 模式识别(心理学) 放射科 计算机科学 内科学
作者
Kun Sun,Hong Zhu,Weimin Chai,Fuhua Yan
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (4): 1095-1103 被引量:17
标识
DOI:10.1002/jmri.28323
摘要

Noninvasive detection of TP53 mutations is useful for the molecular stratification of breast cancer.To explore MRI radiomics features reflecting TP53 mutations in breast cancer and propose a classifier for detecting such mutations.Retrospective.A total of 139 breast cancer patients with TP53 expression profiling (98 with TP53 mutations and 41 without TP53 mutations).1.5 T, T1-weighted (T1W) DCE-MRI.Lesions were manually segmented using subtracted T1WI. A total of 944 radiomics features (including 744 wavelet-related features) and 7 clinicopathological features were extracted from each lesion. Principal component analysis and Pearson's correlation analysis were used to preprocess the features. Linear discriminant analysis, logistic regression (LR), support vector machine (SVM), and random forest (RF) were used as the classifiers.Analysis of variance, Kruskal-Wallis and recursive features elimination were used to select features. Receiver operating characteristic (ROC) analysis was performed to compare the diagnostic accuracy.For the radiomics model, the validation cohorts AUCs of the four classifiers ranged from 0.69 (RF) to 0.74 (LR), and LR (0.74) attained the highest AUCs. For the clinicopathological-radiomics combined model, the validation AUCs of the four classifiers ranged from 0.68 (RF) to 0.86 (SVM), and SVM (0.86) attained highest AUCs. In the subgroup analysis of triple-negative (TN) and luminal type breast cancer, RF achieved the highest AUCs (0.83 and 0.94).Clinicopathological-radiomics combined model with SVM could be used as noninvasive biomarkers for predicting TP53 mutations. RF was recommended for the detection of TP53 mutations in TN and luminal type breast cancer.3 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangheng发布了新的文献求助10
刚刚
啊啊啊啊完成签到,获得积分20
刚刚
NexusExplorer应助甜蜜黄蜂采纳,获得10
1秒前
归尘发布了新的文献求助10
1秒前
用户12306发布了新的文献求助10
1秒前
黎明森发布了新的文献求助10
1秒前
敖恶发布了新的文献求助10
2秒前
4秒前
啦啦小牛完成签到 ,获得积分10
5秒前
可爱的函函应助maguodrgon采纳,获得10
6秒前
fann完成签到,获得积分10
6秒前
7秒前
7秒前
浮游应助jimmyhui采纳,获得10
7秒前
8秒前
orixero应助科研通管家采纳,获得10
8秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助萝卜采纳,获得10
10秒前
Micky完成签到,获得积分10
10秒前
11秒前
Foch发布了新的文献求助10
12秒前
甜蜜黄蜂发布了新的文献求助10
12秒前
王小树发布了新的文献求助10
12秒前
13秒前
xsf发布了新的文献求助10
15秒前
16秒前
自然友菱完成签到,获得积分10
16秒前
研友_ZeqAxZ完成签到,获得积分0
17秒前
CipherSage应助苹果映菱采纳,获得10
17秒前
柠萌酸循环完成签到,获得积分20
18秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Representations of the Orient in Western Music: Violence and Sensuality 300
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4798072
求助须知:如何正确求助?哪些是违规求助? 4117711
关于积分的说明 12738429
捐赠科研通 3848088
什么是DOI,文献DOI怎么找? 2120365
邀请新用户注册赠送积分活动 1142441
关于科研通互助平台的介绍 1032073