Neuromorphic adaptive spiking CPG towards bio-inspired locomotion

中心图形发生器 神经形态工程学 计算机科学 尖峰神经网络 机器人 适应性 数字图形发生器 人工智能 节奏 人工神经网络 炸薯条 物理 生物 生态学 电信 声学
作者
Pablo López-Osorio,Alberto Patiño-Saucedo,Juan P. Domínguez-Morales,Horacio Rostro‐González,Fernando Pérez-Peña
出处
期刊:Neurocomputing [Elsevier]
卷期号:502: 57-70 被引量:14
标识
DOI:10.1016/j.neucom.2022.06.085
摘要

In recent years, locomotion mechanisms exhibited by vertebrate animals have been the inspiration for the improvement in the performance of robotic systems. These mechanisms include the adaptability of their locomotion to any change registered in the environment through their biological sensors. In this regard, we aim to replicate such kind of adaptability in legged robots through a Spiking Central Pattern Generator. This Spiking Central Pattern Generator generates different locomotion (rhythmic) patterns which are driven by an external stimulus, that is, the output of a Force Sensitive Resistor connected to the robot to provide feedback. The Spiking Central Pattern Generator consists of a network of five populations of Leaky Integrate-and-Fire neurons designed with a specific topology in such a way that the rhythmic patterns can be generated and driven by the aforementioned external stimulus. Therefore, the locomotion of the end robotic platform (any-legged robot) can be adapted to the terrain by using any sensor as input. The Spiking Central Pattern Generator with adaptive learning has been numerically validated at software and hardware level, using the Brian 2 simulator and the SpiNNaker neuromorphic platform for the latest. In particular, our experiments clearly show an adaptation in the oscillation frequencies between the spikes produced in the populations of the Spiking Central Pattern Generator while the input stimulus varies. To validate the robustness and adaptability of the Spiking Central Pattern Generator, we have performed several tests by variating the output of the sensor. These experiments were carried out in Brian 2 and SpiNNaker; both implementations showed a similar behavior with a Pearson correlation coefficient of 0.905.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西柚完成签到 ,获得积分10
4秒前
乐乐应助丁3采纳,获得10
4秒前
gigadrill完成签到,获得积分10
4秒前
中科院饲养员完成签到 ,获得积分10
4秒前
5秒前
5秒前
7秒前
brwen完成签到,获得积分10
8秒前
枕星河完成签到,获得积分10
9秒前
ioi完成签到 ,获得积分10
9秒前
10秒前
10秒前
天天快乐应助Joshua采纳,获得10
11秒前
hy发布了新的文献求助10
12秒前
标致的幼菱完成签到,获得积分10
13秒前
机器猫发布了新的文献求助30
15秒前
xiaohe完成签到,获得积分10
16秒前
小蜜蜂完成签到 ,获得积分10
19秒前
生命科学的第一推动力完成签到 ,获得积分10
22秒前
28秒前
闲宁神逸完成签到 ,获得积分10
28秒前
29秒前
30秒前
30秒前
beagle完成签到,获得积分10
35秒前
谦让的丹雪完成签到,获得积分10
40秒前
41秒前
42秒前
magicfu发布了新的文献求助10
45秒前
晓晓发布了新的文献求助10
47秒前
ZYN发布了新的文献求助30
50秒前
51秒前
美好向日葵完成签到,获得积分10
52秒前
53秒前
huanir99完成签到 ,获得积分10
58秒前
kekesun发布了新的文献求助10
59秒前
苏日古嘎完成签到,获得积分10
1分钟前
花藏影完成签到,获得积分10
1分钟前
银色星辰完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5862724
求助须知:如何正确求助?哪些是违规求助? 6383995
关于积分的说明 15646655
捐赠科研通 4976371
什么是DOI,文献DOI怎么找? 2684527
邀请新用户注册赠送积分活动 1627756
关于科研通互助平台的介绍 1585393