A novel data-driven decision model based on extended belief rule base to predict China's carbon emissions

推论 温室气体 气候变化 全球变暖 过程(计算) 环境经济学 计算机科学 环境资源管理 环境科学 运筹学 工程类 经济 人工智能 生态学 生物 操作系统
作者
Fei-Fei Ye,Long-Hao Yang,Haitian Lu,Ying‐Ming Wang
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:318: 115547-115547 被引量:19
标识
DOI:10.1016/j.jenvman.2022.115547
摘要

Global warming and climate change are gaining traction in recent years. As a major cause of global warming, carbon emissions were centered to China's climate change policy initiatives. Nevertheless, the existing policy discourse has yet reached a consensus on the optimal modeling method for carbon emissions prediction that is well-informed of both policy goals and the time-series pattern of carbon emissions. This paper fills the gap by promoting a novel data-driven decision model for carbon emissions prediction that is based on the extended belief rule base (EBRB) inference model. The new decision model consists of three components: 1) an indicator integration method, which aims to generate a few group indicators from a large number of statistical indicators; 2) a new EBRB construction method, which aims to consider the management policy goals for constructing EBRB; 3) a new ER-based inference method, which aims to predict carbon emissions based on time series change of relevant factors. The effectiveness of the proposed decision model has been tested against carbon emissions management data from 30 provinces in China. Experimental results demonstrate that the model will offer powerful reference value in the policy decision-making process, which will help to meet policy requirements for carbon emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
海阔天空完成签到,获得积分10
4秒前
自觉觅柔完成签到,获得积分10
5秒前
小思完成签到 ,获得积分10
7秒前
orixero应助寒冷的冬瓜采纳,获得10
8秒前
呼呼哈哈完成签到,获得积分10
9秒前
酷波er应助芒晨牧微采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
未来可期应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
1326应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得20
9秒前
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
赘婿应助油锅里的鱼采纳,获得10
11秒前
谢123完成签到 ,获得积分10
11秒前
星辰大海应助药学小团子采纳,获得10
12秒前
Shaylee完成签到,获得积分10
12秒前
13秒前
王振琪发布了新的文献求助10
16秒前
阳光飞珍完成签到,获得积分10
17秒前
我是老大应助乔乔兔采纳,获得10
17秒前
18秒前
mengkezhang发布了新的文献求助50
18秒前
ct发布了新的文献求助10
19秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4122466
求助须知:如何正确求助?哪些是违规求助? 3660321
关于积分的说明 11586498
捐赠科研通 3361643
什么是DOI,文献DOI怎么找? 1847116
邀请新用户注册赠送积分活动 911712
科研通“疑难数据库(出版商)”最低求助积分说明 827554