Characterization of exosomes derived from ovarian cancer cells and normal ovarian epithelial cells by nanoparticle tracking analysis

外体 癌症研究 化学 卵巢癌 小RNA 细胞 卵巢肿瘤
作者
Wei Zhang,Peng Peng,Yun Kuang,Jiaxin Yang,Dongyan Cao,Yan You,Keng Shen
出处
期刊:Tumor Biology [SAGE Publishing]
卷期号:37 (3): 4213-4221 被引量:73
标识
DOI:10.1007/s13277-015-4105-8
摘要

Cellular exosomes are involved in many disease processes and have the potential to be used for diagnosis and treatment. In this study, we compared the characteristics of exosomes derived from human ovarian epithelial cells (HOSEPiC) and three epithelial ovarian cancer cell lines (OVCAR3, IGROV1, and ES-2) to investigate the differences between exosomes originating from normal and malignant cells. Two established colloid-chemical methodologies, electron microscopy (EM) and dynamic light scattering (DLS), and a relatively new method, nanoparticle tracking analysis (NTA), were used to measure the size and size distribution of exosomes. The concentration and epithelial cellular adhesion molecule (EpCAM) expression of exosomes were measured by NTA. Quantum dots were conjugated with anti-EpCAM to label exosomes, and the labeled exosomes were detected by NTA in fluorescent mode. The normal-cell-derived exosomes were significantly larger than those derived from malignant cells, and exosomes were successfully labeled using anti-EpCAM-conjugated quantum dots. Exosomes from different cell lines may vary in size, and exosomes might be considered as potential diagnosis biomarkers. NTA can be considered a useful, efficient, and objective method for the study of different exosomes and their unique properties in ovarian cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
Jasper应助我独舞采纳,获得10
1秒前
顾矜应助嘟嘟采纳,获得10
1秒前
JamesPei应助成就山菡采纳,获得10
1秒前
认真的雪完成签到,获得积分10
2秒前
fragile发布了新的文献求助10
2秒前
liquss发布了新的文献求助30
2秒前
3秒前
cgshao完成签到,获得积分10
3秒前
3秒前
传奇3应助炼丹采纳,获得10
5秒前
mahehivebv111完成签到,获得积分10
5秒前
6秒前
6秒前
ssssima完成签到,获得积分10
6秒前
7秒前
余鱼鱼完成签到,获得积分10
7秒前
爱吃泡芙发布了新的文献求助10
7秒前
顾矜应助Shannon采纳,获得10
7秒前
9秒前
9秒前
9秒前
小丸子完成签到,获得积分10
9秒前
10秒前
10秒前
上官若男应助皇甫君浩采纳,获得20
10秒前
111发布了新的文献求助10
13秒前
13秒前
liquss完成签到,获得积分10
13秒前
Hello应助King采纳,获得30
14秒前
wangxuejiao发布了新的文献求助10
15秒前
生动路人发布了新的文献求助10
16秒前
16秒前
sunshinediana发布了新的文献求助10
16秒前
赘婿应助快看不到太阳采纳,获得10
17秒前
深深深海完成签到,获得积分10
19秒前
由于完成签到 ,获得积分10
19秒前
19秒前
Rookie99完成签到,获得积分10
20秒前
彭于晏应助大大撒采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109272
求助须知:如何正确求助?哪些是违规求助? 4318042
关于积分的说明 13453386
捐赠科研通 4147922
什么是DOI,文献DOI怎么找? 2272930
邀请新用户注册赠送积分活动 1275085
关于科研通互助平台的介绍 1213282