Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

短杆菌肽 双层 脂质双层 化学 生物化学 离子通道 膜蛋白 跨膜蛋白 姜黄素 生物膜 生物物理学 机械敏感通道 生物 受体
作者
Helgi I. Ingólfsson,Pratima Thakur,Karl F. Herold,E. Ashley Hobart,Nicole Ramsey,Xavier Periole,Djurre H. de Jong,Martijn Zwama,Duygu Yılmaz,Katherine Hall,Thorsten Maretzky,Hugh C. Hemmings,Carl P. Blobel,Siewert J. Marrink,Armağan Koçer,Jon T. Sack,Olaf S. Andersen
出处
期刊:ACS Chemical Biology [American Chemical Society]
卷期号:9 (8): 1788-1798 被引量:234
标识
DOI:10.1021/cb500086e
摘要

A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷茹嫣发布了新的文献求助10
1秒前
Owen应助科研通管家采纳,获得10
2秒前
Ellctoy应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
失眠夏山发布了新的文献求助10
4秒前
5秒前
天天快乐应助midori采纳,获得10
6秒前
余弦波完成签到 ,获得积分10
7秒前
丘比特应助娇气的怜容采纳,获得10
10秒前
12秒前
15秒前
lijikj完成签到 ,获得积分10
18秒前
18秒前
18秒前
晚睡要秃头完成签到,获得积分10
19秒前
金豆子完成签到,获得积分10
21秒前
Ich完成签到 ,获得积分10
21秒前
积极枕头发布了新的文献求助10
22秒前
25秒前
木尼热发布了新的文献求助10
26秒前
KanadeElite完成签到,获得积分10
27秒前
谦让的秀发布了新的文献求助10
27秒前
29秒前
黄淮二傻发布了新的文献求助10
29秒前
李天浩发布了新的文献求助10
29秒前
吃吃喝喝发布了新的文献求助10
34秒前
绾绾发布了新的文献求助10
35秒前
暴躁科研菜狗完成签到 ,获得积分10
39秒前
王wkl关注了科研通微信公众号
40秒前
t6发布了新的文献求助10
41秒前
42秒前
吃吃喝喝完成签到,获得积分10
44秒前
谦让的秀完成签到,获得积分10
44秒前
Akim应助奇怪的芝士吃多了采纳,获得10
44秒前
Zfy发布了新的文献求助10
50秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2422697
求助须知:如何正确求助?哪些是违规求助? 2111822
关于积分的说明 5346804
捐赠科研通 1839245
什么是DOI,文献DOI怎么找? 915590
版权声明 561205
科研通“疑难数据库(出版商)”最低求助积分说明 489710