VARIATION PARTITIONING OF SPECIES DATA MATRICES: ESTIMATION AND COMPARISON OF FRACTIONS

典型对应分析 典型相关 典型分析 估计员 变化(天文学) 对应分析 冗余(工程) 统计 群落结构 数学 计量经济学 生态学 计算机科学 生物 丰度(生态学) 物理 操作系统 天体物理学
作者
Pedro R. Peres‐Neto,Pierre Legendre,Stéphane Dray,Daniel Borcard
出处
期刊:Ecology [Wiley]
卷期号:87 (10): 2614-2625 被引量:2155
标识
DOI:10.1890/0012-9658(2006)87[2614:vposdm]2.0.co;2
摘要

Establishing relationships between species distributions and environmental characteristics is a major goal in the search for forces driving species distributions. Canonical ordinations such as redundancy analysis and canonical correspondence analysis are invaluable tools for modeling communities through environmental predictors. They provide the means for conducting direct explanatory analysis in which the association among species can be studied according to their common and unique relationships with the environmental variables and other sets of predictors of interest, such as spatial variables. Variation partitioning can then be used to test and determine the likelihood of these sets of predictors in explaining patterns in community structure. Although variation partitioning in canonical analysis is routinely used in ecological analysis, no effort has been reported in the literature to consider appropriate estimators so that comparisons between fractions or, eventually, between different canonical models are meaningful. In this paper, we show that variation partitioning as currently applied in canonical analysis is biased. We present appropriate unbiased estimators. In addition, we outline a statistical test to compare fractions in canonical analysis. The question addressed by the test is whether two fractions of variation are significantly different from each other. Such assessment provides an important step toward attaining an understanding of the factors patterning community structure. The test is shown to have correct Type I error rates and good power for both redundancy analysis and canonical correspondence analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助SCI采纳,获得10
刚刚
guanyu108完成签到,获得积分10
3秒前
6秒前
重要的小丸子完成签到,获得积分10
7秒前
炙热念双完成签到 ,获得积分10
8秒前
8秒前
SCI发布了新的文献求助10
12秒前
dennisysz发布了新的文献求助10
13秒前
24秒前
科研通AI5应助你好好好采纳,获得10
26秒前
海棠微雨完成签到,获得积分10
26秒前
小夏发布了新的文献求助10
27秒前
27秒前
28秒前
28秒前
YY-Bubble完成签到,获得积分10
31秒前
爆米花应助久别采纳,获得10
32秒前
玉灵子发布了新的文献求助10
32秒前
33秒前
小夏完成签到,获得积分20
34秒前
木木杨发布了新的文献求助10
34秒前
34秒前
cmd发布了新的文献求助10
35秒前
爆米花应助玉灵子采纳,获得10
37秒前
fan完成签到 ,获得积分10
37秒前
39秒前
公交卡发布了新的文献求助10
40秒前
40秒前
刻苦慕晴完成签到 ,获得积分10
41秒前
41秒前
lin完成签到,获得积分10
42秒前
Joaquin完成签到,获得积分10
43秒前
科研强发布了新的文献求助10
43秒前
聪明的芳芳完成签到 ,获得积分10
44秒前
青羽凌雪应助科研通管家采纳,获得10
46秒前
橘子应助科研通管家采纳,获得10
46秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
乐乐应助科研通管家采纳,获得10
46秒前
乐乐应助科研通管家采纳,获得10
46秒前
共享精神应助科研通管家采纳,获得10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777414
求助须知:如何正确求助?哪些是违规求助? 3322767
关于积分的说明 10211585
捐赠科研通 3038128
什么是DOI,文献DOI怎么找? 1667131
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103