代谢物
新陈代谢
代谢途径
化学
生物化学
葡萄糖醛酸化
硫酸化
代谢组学
牛磺酸
生物合成
体外
微粒体
氨基酸
色谱法
酶
作者
Chunyun Zhang,Susanne Flor,Patricia Ruíz,Gabriele Ludewig,Hans‐Joachim Lehmler
标识
DOI:10.1021/acs.est.1c01076
摘要
The characterization of the metabolism of lower chlorinated PCB, such as 4-chlorobiphenyl (PCB3), is challenging because of the complex metabolite mixtures formed in vitro and in vivo. We performed parallel metabolism studies with PCB3 and its hydroxylated metabolites to characterize the metabolism of PCB3 in HepG2 cells using nontarget high-resolution mass spectrometry (Nt-HRMS). Briefly, HepG2 cells were exposed for 24 h to 10 μM PCB3 or its seven hydroxylated metabolites in DMSO or DMSO alone. Six classes of metabolites were identified with Nt-HRMS in the culture medium exposed to PCB3, including monosubstituted metabolites at the 3′-, 4′-, 3-, and 4- (1,2-shift product) positions and disubstituted metabolites at the 3′,4′-position. 3′,4′-Di-OH-3 (4′-chloro-3,4-dihydroxybiphenyl), which can be oxidized to a reactive and toxic PCB3 quinone, was a central metabolite that was rapidly methylated. The resulting hydroxylated-methoxylated metabolites underwent further sulfation and, to a lesser extent, glucuronidation. Metabolomic analyses revealed an altered tryptophan metabolism in HepG2 cells following PCB3 exposure. Some PCB3 metabolites were associated with alterations of endogenous metabolic pathways, including amino acid metabolism, vitamin A (retinol) metabolism, and bile acid biosynthesis. In-depth studies are needed to investigate the toxicities of PCB3 metabolites, especially the 3′,4′-di-OH-3 derivatives identified in this study.
科研通智能强力驱动
Strongly Powered by AbleSci AI