判别式
计算机科学
粒度
人工智能
模式识别(心理学)
相似性(几何)
计算机视觉
特征(语言学)
机器学习
模态(人机交互)
图像(数学)
语言学
操作系统
哲学
作者
Liyan Zhang,Guodong Du,Fan Liu,Huawei Tu,Xiangbo Shu
标识
DOI:10.1109/tnnls.2021.3085978
摘要
Cross-modality visible-infrared person reidentification (VI-ReID), which aims to retrieve pedestrian images captured by both visible and infrared cameras, is a challenging but essential task for smart surveillance systems. The huge barrier between visible and infrared images has led to the large cross-modality discrepancy and intraclass variations. Most existing VI-ReID methods tend to learn discriminative modality-sharable features based on either global or part-based representations, lacking effective optimization objectives. In this article, we propose a novel global-local multichannel (GLMC) network for VI-ReID, which can learn multigranularity representations based on both global and local features. The coarse- and fine-grained information can complement each other to form a more discriminative feature descriptor. Besides, we also propose a novel center loss function that aims to simultaneously improve the intraclass cross-modality similarity and enlarge the interclass discrepancy to explicitly handle the cross-modality discrepancy issue and avoid the model fluctuating problem. Experimental results on two public datasets have demonstrated the superiority of the proposed method compared with state-of-the-art approaches in terms of effectiveness.
科研通智能强力驱动
Strongly Powered by AbleSci AI