Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future—A systematic review

机器学习 斯科普斯 人工智能 系统回顾 计算机科学 医学 荟萃分析 医学物理学 梅德林 病理 政治学 法学
作者
Rasheed Omobolaji Alabi,Omar Youssef,Matti Pirinen,Mohammed Elmusrati,Antti Mäkitie,Ilmo Leivo,Alhadi Almangush
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:115: 102060-102060 被引量:118
标识
DOI:10.1016/j.artmed.2021.102060
摘要

Oral cancer can show heterogenous patterns of behavior. For proper and effective management of oral cancer, early diagnosis and accurate prediction of prognosis are important. To achieve this, artificial intelligence (AI) or its subfield, machine learning, has been touted for its potential to revolutionize cancer management through improved diagnostic precision and prediction of outcomes. Yet, to date, it has made only few contributions to actual medical practice or patient care. This study provides a systematic review of diagnostic and prognostic application of machine learning in oral squamous cell carcinoma (OSCC) and also highlights some of the limitations and concerns of clinicians towards the implementation of machine learning-based models for daily clinical practice. We searched OvidMedline, PubMed, Scopus, Web of Science, and Institute of Electrical and Electronics Engineers (IEEE) databases from inception until February 2020 for articles that used machine learning for diagnostic or prognostic purposes of OSCC. Only original studies that examined the application of machine learning models for prognostic and/or diagnostic purposes were considered. Independent extraction of articles was done by two researchers (A.R. & O.Y) using predefine study selection criteria. We used the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) in the searching and screening processes. We also used Prediction model Risk of Bias Assessment Tool (PROBAST) for assessing the risk of bias (ROB) and quality of included studies. A total of 41 studies were published to have used machine learning to aid in the diagnosis/or prognosis of OSCC. The majority of these studies used the support vector machine (SVM) and artificial neural network (ANN) algorithms as machine learning techniques. Their specificity ranged from 0.57 to 1.00, sensitivity from 0.70 to 1.00, and accuracy from 63.4 % to 100.0 % in these studies. The main limitations and concerns can be grouped as either the challenges inherent to the science of machine learning or relating to the clinical implementations. Machine learning models have been reported to show promising performances for diagnostic and prognostic analyses in studies of oral cancer. These models should be developed to further enhance explainability, interpretability, and externally validated for generalizability in order to be safely integrated into daily clinical practices. Also, regulatory frameworks for the adoption of these models in clinical practices are necessary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是是是发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
清钰发布了新的文献求助10
4秒前
miao完成签到,获得积分20
5秒前
wangpeijia发布了新的文献求助10
7秒前
7秒前
学术渣渣发布了新的文献求助10
7秒前
橙子fy16_完成签到,获得积分10
8秒前
8秒前
科研通AI5应助miao采纳,获得30
9秒前
NexusExplorer应助李y梅子采纳,获得20
9秒前
hahhhhhh2完成签到,获得积分10
9秒前
阿飞完成签到,获得积分10
9秒前
HJJHJH发布了新的文献求助50
10秒前
NexusExplorer应助是是是采纳,获得10
10秒前
橙子fy16_发布了新的文献求助10
10秒前
11秒前
所所应助佟佳霖采纳,获得10
12秒前
12秒前
Wxx发布了新的文献求助10
12秒前
李健应助Ryan采纳,获得20
13秒前
13秒前
常常完成签到,获得积分10
13秒前
Zirong发布了新的文献求助10
15秒前
15秒前
16秒前
SYLH应助南枳采纳,获得10
16秒前
是是是完成签到,获得积分10
16秒前
16秒前
SYLH应助可爱丸子采纳,获得10
17秒前
wangpeijia完成签到,获得积分10
17秒前
名_f完成签到,获得积分10
17秒前
我要睡觉w发布了新的文献求助10
17秒前
英俊的铭应助小腻o采纳,获得10
18秒前
凡高爱自由完成签到,获得积分10
18秒前
kaolatong完成签到,获得积分10
20秒前
我爱螺蛳粉完成签到 ,获得积分10
21秒前
Windsyang发布了新的文献求助10
22秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846501
求助须知:如何正确求助?哪些是违规求助? 3388981
关于积分的说明 10555297
捐赠科研通 3109436
什么是DOI,文献DOI怎么找? 1713719
邀请新用户注册赠送积分活动 824868
科研通“疑难数据库(出版商)”最低求助积分说明 775101