Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future—A systematic review

机器学习 斯科普斯 人工智能 系统回顾 计算机科学 医学 荟萃分析 医学物理学 梅德林 病理 政治学 法学
作者
Rasheed Omobolaji Alabi,Omar Youssef,Matti Pirinen,Mohammed Elmusrati,Antti Mäkitie,Ilmo Leivo,Alhadi Almangush
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:115: 102060-102060 被引量:121
标识
DOI:10.1016/j.artmed.2021.102060
摘要

Oral cancer can show heterogenous patterns of behavior. For proper and effective management of oral cancer, early diagnosis and accurate prediction of prognosis are important. To achieve this, artificial intelligence (AI) or its subfield, machine learning, has been touted for its potential to revolutionize cancer management through improved diagnostic precision and prediction of outcomes. Yet, to date, it has made only few contributions to actual medical practice or patient care. This study provides a systematic review of diagnostic and prognostic application of machine learning in oral squamous cell carcinoma (OSCC) and also highlights some of the limitations and concerns of clinicians towards the implementation of machine learning-based models for daily clinical practice. We searched OvidMedline, PubMed, Scopus, Web of Science, and Institute of Electrical and Electronics Engineers (IEEE) databases from inception until February 2020 for articles that used machine learning for diagnostic or prognostic purposes of OSCC. Only original studies that examined the application of machine learning models for prognostic and/or diagnostic purposes were considered. Independent extraction of articles was done by two researchers (A.R. & O.Y) using predefine study selection criteria. We used the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) in the searching and screening processes. We also used Prediction model Risk of Bias Assessment Tool (PROBAST) for assessing the risk of bias (ROB) and quality of included studies. A total of 41 studies were published to have used machine learning to aid in the diagnosis/or prognosis of OSCC. The majority of these studies used the support vector machine (SVM) and artificial neural network (ANN) algorithms as machine learning techniques. Their specificity ranged from 0.57 to 1.00, sensitivity from 0.70 to 1.00, and accuracy from 63.4 % to 100.0 % in these studies. The main limitations and concerns can be grouped as either the challenges inherent to the science of machine learning or relating to the clinical implementations. Machine learning models have been reported to show promising performances for diagnostic and prognostic analyses in studies of oral cancer. These models should be developed to further enhance explainability, interpretability, and externally validated for generalizability in order to be safely integrated into daily clinical practices. Also, regulatory frameworks for the adoption of these models in clinical practices are necessary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助FLY采纳,获得10
刚刚
tsyanikmo发布了新的文献求助50
1秒前
3秒前
3秒前
七安发布了新的文献求助10
6秒前
8秒前
扫地888完成签到 ,获得积分10
8秒前
X1关注了科研通微信公众号
10秒前
11秒前
搞怪凡波发布了新的文献求助10
12秒前
NexusExplorer应助缓慢谷云采纳,获得10
12秒前
YamDaamCaa应助健壮涵柳采纳,获得30
14秒前
17秒前
雪白扬发布了新的文献求助10
18秒前
strug783完成签到,获得积分10
19秒前
直率的柚子完成签到,获得积分10
19秒前
杜杜发布了新的文献求助10
21秒前
qweqwe完成签到 ,获得积分10
21秒前
李故发布了新的文献求助10
22秒前
23秒前
Lucas应助zdl采纳,获得10
23秒前
岳苏佳发布了新的文献求助10
23秒前
脑洞疼应助怦然采纳,获得10
23秒前
InaZheng发布了新的文献求助30
24秒前
风清扬应助爱学习的曼卉采纳,获得30
24秒前
24秒前
风清扬应助爱学习的曼卉采纳,获得30
24秒前
lj发布了新的文献求助10
26秒前
27秒前
英姑应助厉害采纳,获得10
27秒前
Anker完成签到,获得积分10
28秒前
28秒前
酷波er应助杜杜采纳,获得10
28秒前
29秒前
X1发布了新的文献求助30
29秒前
充电宝应助跳跃虔采纳,获得10
30秒前
KKKKKkkk发布了新的文献求助30
31秒前
31秒前
32秒前
33秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4079331
求助须知:如何正确求助?哪些是违规求助? 3618642
关于积分的说明 11484460
捐赠科研通 3335016
什么是DOI,文献DOI怎么找? 1833255
邀请新用户注册赠送积分活动 902532
科研通“疑难数据库(出版商)”最低求助积分说明 821125