Matrix factorization-based data fusion for the prediction of RNA-binding proteins and alternative splicing event associations during epithelial-mesenchymal transition.

RNA剪接 生物 生物信息学
作者
Yushan Qiu,Wai-Ki Ching,Quan Zou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:2
标识
DOI:10.1093/bib/bbab332
摘要

Motivation The epithelial-mesenchymal transition (EMT) is a cellular-developmental process activated during tumor metastasis. Transcriptional regulatory networks controlling EMT are well studied; however, alternative RNA splicing also plays a critical regulatory role during this process. Unfortunately, a comprehensive understanding of alternative splicing (AS) and the RNA-binding proteins (RBPs) that regulate it during EMT remains largely unknown. Therefore, a great need exists to develop effective computational methods for predicting associations of RBPs and AS events. Dramatically increasing data sources that have direct and indirect information associated with RBPs and AS events have provided an ideal platform for inferring these associations. Results In this study, we propose a novel method for RBP-AS target prediction based on weighted data fusion with sparse matrix tri-factorization (WDFSMF in short) that simultaneously decomposes heterogeneous data source matrices into low-rank matrices to reveal hidden associations. WDFSMF can select and integrate data sources by assigning different weights to those sources, and these weights can be assigned automatically. In addition, WDFSMF can identify significant RBP complexes regulating AS events and eliminate noise and outliers from the data. Our proposed method achieves an area under the receiver operating characteristic curve (AUC) of $90.78\%$, which shows that WDFSMF can effectively predict RBP-AS event associations with higher accuracy compared with previous methods. Furthermore, this study identifies significant RBPs as complexes for AS events during EMT and provides solid ground for further investigation into RNA regulation during EMT and metastasis. WDFSMF is a general data fusion framework, and as such it can also be adapted to predict associations between other biological entities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
狂奔的蜗牛完成签到,获得积分10
1秒前
咖喱酥发布了新的文献求助20
2秒前
SciGPT应助香菜大姐采纳,获得10
2秒前
key发布了新的文献求助10
3秒前
迷路的沛芹应助迹K采纳,获得10
3秒前
3秒前
伯赏万天发布了新的文献求助10
4秒前
Cheshire完成签到,获得积分10
5秒前
ZYP完成签到,获得积分20
5秒前
小苏打完成签到,获得积分10
6秒前
6秒前
6秒前
Gauss完成签到,获得积分0
6秒前
7秒前
Jasper应助key采纳,获得10
7秒前
9秒前
ZYP发布了新的文献求助10
9秒前
9秒前
随风完成签到,获得积分0
9秒前
围城烟火完成签到,获得积分10
10秒前
冲冲冲发布了新的文献求助10
10秒前
10秒前
Owen应助灿guo采纳,获得10
10秒前
白小黑发布了新的文献求助10
11秒前
Owen应助旧梦采纳,获得10
12秒前
wozheyishenga完成签到,获得积分10
13秒前
xavier完成签到 ,获得积分10
13秒前
13秒前
LLRO发布了新的文献求助10
13秒前
长毛象发布了新的文献求助10
14秒前
14秒前
李健的小迷弟应助annie采纳,获得10
14秒前
14秒前
14秒前
jjl完成签到,获得积分20
14秒前
良辰美景完成签到 ,获得积分10
14秒前
刘一安完成签到 ,获得积分10
15秒前
我是老大应助伯赏万天采纳,获得10
15秒前
未来学术司马懿应助qyy采纳,获得10
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
変形菌ミクソヴァース 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4250916
求助须知:如何正确求助?哪些是违规求助? 3784173
关于积分的说明 11877959
捐赠科研通 3435680
什么是DOI,文献DOI怎么找? 1885395
邀请新用户注册赠送积分活动 937016
科研通“疑难数据库(出版商)”最低求助积分说明 842893