数学
索波列夫空间
Lp空间
班级(哲学)
数学分析
非线性系统
纯数学
巴拿赫空间
量子力学
物理
人工智能
计算机科学
作者
Anudeep Kumar Arora,Oscar Riaño,Svetlana Roudenko
标识
DOI:10.1142/s0219199721500747
摘要
We investigate the well-posedness in the generalized Hartree equation [Formula: see text], [Formula: see text], [Formula: see text], for low powers of nonlinearity, [Formula: see text]. We establish the local well-posedness for a class of data in weighted Sobolev spaces, following ideas of Cazenave and Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Comm. Contemp. Math. 19(2) (2017) 1650038. This crucially relies on the boundedness of the Riesz transform in weighted Lebesgue spaces. As a consequence, we obtain a class of data that exists globally, moreover, scatters in positive time. Furthermore, in the focusing case in the [Formula: see text]-supercritical setting we obtain a subset of locally well-posed data with positive energy, which blows up in finite time.
科研通智能强力驱动
Strongly Powered by AbleSci AI