Synthesis and characterization of (68-x) CuO – xV2O5 – 32TeO2 (x = 0–68 mol%) and (35-x) CuO – xV2O5 – 65TeO2 (x = 0–35 mol%) glasses: Conduction mechanism, structure and EPR study

结晶学 分析化学(期刊) 化学 放松(心理学) 晶体结构 物理化学
作者
Consuelo Mugoni,Roberto Rosa,Roberto Giovanardi,Mario Affatigato,Magdalena Lassinantti Gualtieri,Cristina Siligardi,S. I. Andronenko,Sushil K. Misra
出处
期刊:Materials Chemistry and Physics [Elsevier]
卷期号:266: 124488- 被引量:1
标识
DOI:10.1016/j.matchemphys.2021.124488
摘要

Abstract In this work, two series of glasses, i.e. (68-x) CuO – xV2O5 – 32TeO2 (x = 0–68 mol%, Te32 series) and (35-x) CuO – xV2O5 – 65TeO2 (x = 0–35 mol%, Te65 series), were synthesized by the melt-quenching method and subjected to physical, thermal and electrical characterization. Their vitreous nature was confirmed by X-Ray diffraction and differential scanning calorimetry, while their structural units were determined by Raman spectroscopy. CuO substitution by V2O5 led to a decrease in density and glass-transition temperature, together with a conductivity increase. Conduction mechanism was interpreted as mainly due to small polaron hopping from the lower (V4+) to the higher (V5+) vanadium valence states. Te32 glasses, possessing the highest electronic conductivities (ranging from 2 E−4 to 5 E−7 Ω−1 cm−1), were investigated by the Electron Paramagnetic Resonance technique, in order to more deeply analyze their structure-conductivity correlation. Particularly, the observed signals were determined to consist in a superposition of a first line due to paramagnetic Cu2+ ions and a second line due to exchange-coupled CuO clusters. Differences in the spectra were determined between samples with higher (i.e. 20-30 mol%) Cu2+ concentrations and samples with lower Cu2+ concentrations, suggesting they are located in different local environments. Finally, it was found that the Cu2+ ions are not involved in the process of electron transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
dd完成签到 ,获得积分10
2秒前
040完成签到 ,获得积分10
2秒前
5秒前
6秒前
初礼发布了新的文献求助10
7秒前
gae发布了新的文献求助10
7秒前
慕容雅柏发布了新的文献求助10
8秒前
今后应助小杨同学采纳,获得10
8秒前
8秒前
隐形千愁完成签到,获得积分10
12秒前
12秒前
song发布了新的文献求助10
14秒前
14秒前
丘比特应助leo采纳,获得20
18秒前
yy发布了新的文献求助10
20秒前
21秒前
22秒前
初礼发布了新的文献求助10
22秒前
桐桐应助Science采纳,获得10
24秒前
Hello应助jiangmax采纳,获得10
25秒前
25秒前
YOOO发布了新的文献求助30
26秒前
罗_应助xxxx采纳,获得10
29秒前
29秒前
31秒前
起昵称好困难完成签到 ,获得积分10
33秒前
34秒前
言字午发布了新的文献求助10
36秒前
37秒前
慕青应助canghainayun采纳,获得10
38秒前
39秒前
朴素的天薇完成签到,获得积分10
41秒前
所所应助无限曼易采纳,获得10
41秒前
41秒前
MM发布了新的文献求助10
44秒前
幽默尔蓉发布了新的文献求助10
45秒前
MayoCQ完成签到,获得积分10
45秒前
dddd28发布了新的文献求助10
45秒前
高分求助中
Thermodynamic data for steelmaking 3000
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Counseling With Immigrants, Refugees, and Their Families From Social Justice Perspectives pages 800
Electrochemistry 500
Statistical Procedures for the Medical Device Industry 400
藍からはじまる蛍光性トリプタンスリン研究 400
Cardiology: Board and Certification Review 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2367920
求助须知:如何正确求助?哪些是违规求助? 2076801
关于积分的说明 5196267
捐赠科研通 1803870
什么是DOI,文献DOI怎么找? 900709
版权声明 558053
科研通“疑难数据库(出版商)”最低求助积分说明 480667