Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease

测速 计算机科学 血流 人工智能 流量(数学) 流动可视化 先验与后验 模式识别(心理学) 物理 机械 医学 认识论 内科学 哲学
作者
Shengze Cai,He Li,Fuyin Zheng,Fang Kong,Ming Dao,George Em Karniadakis,Subra Suresh
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:118 (13) 被引量:74
标识
DOI:10.1073/pnas.2100697118
摘要

Understanding the mechanics of blood flow is necessary for developing insights into mechanisms of physiology and vascular diseases in microcirculation. Given the limitations of technologies available for assessing in vivo flow fields, in vitro methods based on traditional microfluidic platforms have been developed to mimic physiological conditions. However, existing methods lack the capability to provide accurate assessment of these flow fields, particularly in vessels with complex geometries. Conventional approaches to quantify flow fields rely either on analyzing only visual images or on enforcing underlying physics without considering visualization data, which could compromise accuracy of predictions. Here, we present artificial-intelligence velocimetry (AIV) to quantify velocity and stress fields of blood flow by integrating the imaging data with underlying physics using physics-informed neural networks. We demonstrate the capability of AIV by quantifying hemodynamics in microchannels designed to mimic saccular-shaped microaneurysms (microaneurysm-on-a-chip, or MAOAC), which signify common manifestations of diabetic retinopathy, a leading cause of vision loss from blood-vessel damage in the retina in diabetic patients. We show that AIV can, without any a priori knowledge of the inlet and outlet boundary conditions, infer the two-dimensional (2D) flow fields from a sequence of 2D images of blood flow in MAOAC, but also can infer three-dimensional (3D) flow fields using only 2D images, thanks to the encoded physics laws. AIV provides a unique paradigm that seamlessly integrates images, experimental data, and underlying physics using neural networks to automatically analyze experimental data and infer key hemodynamic indicators that assess vascular injury.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
灵巧的飞雪完成签到 ,获得积分10
3秒前
凌兰完成签到 ,获得积分10
4秒前
VDC发布了新的文献求助10
4秒前
Hi_aloha发布了新的文献求助10
6秒前
9秒前
67完成签到 ,获得积分10
12秒前
13秒前
figure完成签到 ,获得积分10
13秒前
二重音发布了新的文献求助10
15秒前
李健应助小四喜采纳,获得10
16秒前
明理萃完成签到 ,获得积分10
16秒前
19秒前
20秒前
慕青应助勤奋的夏蓉采纳,获得10
20秒前
吴钰哲完成签到,获得积分10
24秒前
jbtjht发布了新的文献求助10
24秒前
轻松的鑫发布了新的文献求助10
25秒前
彭瞻完成签到 ,获得积分10
26秒前
周周完成签到,获得积分20
26秒前
hzhniubility完成签到,获得积分10
27秒前
27秒前
二重音完成签到,获得积分10
28秒前
29秒前
32秒前
烂漫之槐发布了新的文献求助10
33秒前
3237924531完成签到,获得积分10
34秒前
科研通AI5应助Hi_aloha采纳,获得10
34秒前
桐桐应助馅饼采纳,获得200
34秒前
可爱败发布了新的文献求助10
36秒前
思源应助麻生采纳,获得10
38秒前
茗姜发布了新的文献求助10
40秒前
iceink发布了新的文献求助200
40秒前
41秒前
杭浩然完成签到,获得积分10
42秒前
44秒前
fzh1234发布了新的文献求助10
46秒前
50秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
我是老大应助科研通管家采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781269
求助须知:如何正确求助?哪些是违规求助? 3326758
关于积分的说明 10228346
捐赠科研通 3041778
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799134
科研通“疑难数据库(出版商)”最低求助积分说明 758751