A deceptive reviews detection model: Separated training of multi-feature learning and classification

计算机科学 可解释性 人工智能 分类器(UML) 机器学习 特征(语言学) 数据挖掘 模式识别(心理学) 语言学 哲学
作者
Ning Cao,Shujuan Ji,Dickson K.W. Chiu,Maoguo Gong
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:187: 115977-115977 被引量:11
标识
DOI:10.1016/j.eswa.2021.115977
摘要

The increasing online reviews play an essential role in the e-commerce platform, which profoundly affects the purchase decisions of consumers. However, rampant dishonest sellers manipulate other buyers or robots to post deceptive reviews for profit. Recently, the detection of deceptive reviews has attracted general research attention, which mainly comprises two directions, traditional methods based on statistics and intelligent methods based on neural networks. These methods use a single feature or multiple features for classifier design. To make full use of different features for better feature representation of detecting deceptive reviews, this paper proposes a new feature fusion strategy and verifies its performance by comparing it with other feature fusion strategies. First, we utilize three independent models for feature extraction: the TextCNN, the Bidirectional Gated Recurrent Unit (GRU), and the Self-Attention are used to learn local semantic features, temporal semantic features, and weighted semantic features of reviews, respectively. Secondly, after obtaining different feature representations from the fully connected layers of these three models, we concatenate them together to form the final documental representation. Finally, we use a full connection layer and the sigmoid function to further learn and complete deceptive review detection. Experiments on three balanced and unbalanced in-domain small datasets (hotel, restaurant, doctor) and mixed-domain datasets show that our model is superior to baselines. Experiments on large-scale data with various imbalanced proportions verify the effectiveness of our method. We also analyze the results of different datasets from the perspective of part of speech to improve the model's interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含糊的画板完成签到,获得积分10
刚刚
ycp完成签到,获得积分10
2秒前
体能行者完成签到,获得积分10
2秒前
流川封完成签到,获得积分10
3秒前
余周周完成签到 ,获得积分10
3秒前
小蘑菇应助zxd采纳,获得30
5秒前
科研通AI5应助yidingshangan采纳,获得10
7秒前
7秒前
成诗怡完成签到,获得积分10
9秒前
共享精神应助rose123456采纳,获得10
9秒前
10秒前
11秒前
ary完成签到,获得积分10
13秒前
所所应助Lea采纳,获得10
14秒前
思源应助是小明啦采纳,获得10
14秒前
zhangyx发布了新的文献求助30
14秒前
百地希留耶完成签到 ,获得积分10
16秒前
Znn发布了新的文献求助10
16秒前
17秒前
18秒前
背后的梦凡完成签到,获得积分10
18秒前
Vicky完成签到 ,获得积分20
18秒前
自信夜春发布了新的文献求助10
21秒前
Znn完成签到,获得积分10
22秒前
22秒前
美满的夏天完成签到,获得积分10
22秒前
23秒前
体能行者关注了科研通微信公众号
26秒前
淡淡大山发布了新的文献求助10
27秒前
lee1992完成签到,获得积分10
27秒前
28秒前
知性的土豆完成签到,获得积分10
28秒前
29秒前
29秒前
31秒前
32秒前
32秒前
毛毛妈完成签到,获得积分10
33秒前
iiiau完成签到,获得积分10
33秒前
一颗杨梅完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778270
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216436
捐赠科研通 3039122
什么是DOI,文献DOI怎么找? 1667788
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758366