Doped MgAl2O4 semiconductor host nanopowders for tunable primary colors emissions for applications as white LEDs

尖晶石 兴奋剂 带隙 激活剂(遗传学) 八面体 晶体结构 材料科学 半导体 发光 结晶学 化学 光电子学 冶金 生物化学 基因
作者
Qurat ul Ain,Bushra Ismail,Asad Muhammad Khan,Rafaqat Ali Khan,Faheem Shah,Hafiz-Ur Rehman,Farkhanda Shahid
出处
期刊:Semiconductor Science and Technology [IOP Publishing]
卷期号:36 (12): 125010-125010 被引量:2
标识
DOI:10.1088/1361-6641/ac2750
摘要

Abstract The emission of white light from hosts having a single phase and the compromised applicability of a very inert, chemically stable, and structurally diverse MgAl 2 O 4 led to a quest for improving the structural, optical, thermal and electrical properties for more innovative applications. A slight modification in lattice site occupation can lead to antisite defects which alter the physical properties of the materials. The presence of larger alkaline earth Sr 2+ cations at the T-sites have been found to improve the behavior of the activator Mn 2+ cations which are substituted for Mg 2+ at T-sites. In the current study, a series of Mn 2+ doped derivatives having a general formula of Mg 1− x −0.3 Mn x Sr 0.3 Al 2 O 4 ( x = 0.1–0.5) were synthesized using the chemical co-precipitation method. Due to the larger radius of Sr 2+ cations, the lattice strain was observed in the cubic crystal structure of magnesium aluminate spinel (MAS). A decrease in the bandgaps of the doped samples indicates the formation of defect states within the bandgap of MAS. Apart from the bandgap transitions, the capture of electrons at oxygen vacancies is also observed in the UV/Vis spectra. The strong tetrahedral site preference of Mn 2+ is altered by the presence of Sr 2+ , hence, some octahedral site occupation of Mn 2+ in the lattice is achieved. The antisite defects along with the occupation of both T- and O-sites by Mn 2+ resulted in novel emission bands centered at 464 nm (blue), 515 nm (green), and 621 nm (red) at λ ex of 380 nm. The emission of the primary colors in a simple lattice with cost-effective and in-toxic constituents can be a possible alternative to the costly rare-earth ions doped complex materials in use to-date.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yellow发布了新的文献求助10
1秒前
1秒前
zyq发布了新的文献求助10
1秒前
JamesPei应助机智的山晴采纳,获得10
1秒前
杨晨铭完成签到,获得积分10
2秒前
Eric发布了新的文献求助10
3秒前
元馨完成签到,获得积分10
3秒前
研友_VZG7GZ应助nowiziki采纳,获得10
3秒前
4秒前
喵喵完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
joe完成签到,获得积分10
4秒前
4秒前
夜阑卧听完成签到,获得积分10
4秒前
欢喜可愁发布了新的文献求助10
5秒前
小二郎应助无限行之采纳,获得10
5秒前
深情安青应助虚幻雨筠采纳,获得10
5秒前
5秒前
黄任行完成签到,获得积分10
5秒前
5秒前
现实的半凡完成签到 ,获得积分10
6秒前
Bonjour完成签到,获得积分10
6秒前
6秒前
芥末发布了新的文献求助10
6秒前
6秒前
6秒前
科研小白完成签到,获得积分10
7秒前
Jiang完成签到,获得积分10
7秒前
whoami完成签到,获得积分10
7秒前
zyzhnu完成签到,获得积分10
7秒前
干卿完成签到,获得积分10
7秒前
乔巴完成签到,获得积分10
7秒前
Beloster应助HX11采纳,获得20
7秒前
太阳完成签到,获得积分10
7秒前
8秒前
圣人海发布了新的文献求助10
9秒前
烟花应助Mine采纳,获得10
9秒前
AR发布了新的文献求助10
9秒前
紧张的书文完成签到 ,获得积分10
9秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4230981
求助须知:如何正确求助?哪些是违规求助? 3764544
关于积分的说明 11828788
捐赠科研通 3423606
什么是DOI,文献DOI怎么找? 1878693
邀请新用户注册赠送积分活动 931773
科研通“疑难数据库(出版商)”最低求助积分说明 839320