亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multitask Deep Learning for Segmentation and Classification of Primary Bone Tumors on Radiographs

医学 射线照相术 放射科 人工智能 试验装置 数据集 计算机科学 核医学
作者
Claudio E. von Schacky,Nikolas Wilhelm,Valerie S. Schäfer,Yannik Leonhardt,Felix G. Gassert,Sarah C. Foreman,Florian T. Gassert,Matthias Jung,Pia M. Jungmann,Maximilian Frederik Russe,Carolin Mogler,Carolin Knebel,Rüdiger von Eisenhart‐Rothe,Marcus R. Makowski,Klaus Woertler,Rainer Burgkart,Alexandra S. Gersing
出处
期刊:Radiology [Radiological Society of North America]
卷期号:301 (2): 398-406 被引量:109
标识
DOI:10.1148/radiol.2021204531
摘要

Background An artificial intelligence model that assesses primary bone tumors on radiographs may assist in the diagnostic workflow. Purpose To develop a multitask deep learning (DL) model for simultaneous bounding box placement, segmentation, and classification of primary bone tumors on radiographs. Materials and Methods This retrospective study analyzed bone tumors on radiographs acquired prior to treatment and obtained from patient data from January 2000 to June 2020. Benign or malignant bone tumors were diagnosed in all patients by using the histopathologic findings as the reference standard. By using split-sample validation, 70% of the patients were assigned to the training set, 15% were assigned to the validation set, and 15% were assigned to the test set. The final performance was evaluated on an external test set by using geographic validation, with accuracy, sensitivity, specificity, and 95% CIs being used for classification, the intersection over union (IoU) being used for bounding box placements, and the Dice score being used for segmentations. Results Radiographs from 934 patients (mean age, 33 years ± 19 [standard deviation]; 419 women) were evaluated in the internal data set, which included 667 benign bone tumors and 267 malignant bone tumors. Six hundred fifty-four patients were in the training set, 140 were in the validation set, and 140 were in the test set. One hundred eleven patients were in the external test set. The multitask DL model achieved 80.2% (89 of 111; 95% CI: 72.8, 87.6) accuracy, 62.9% (22 of 35; 95% CI: 47, 79) sensitivity, and 88.2% (67 of 76; CI: 81, 96) specificity in the classification of bone tumors as malignant or benign. The model achieved an IoU of 0.52 ± 0.34 for bounding box placements and a mean Dice score of 0.60 ± 0.37 for segmentations. The model accuracy was higher than that of two radiologic residents (71.2% and 64.9%; P = .002 and P < .001, respectively) and was comparable with that of two musculoskeletal fellowship-trained radiologists (83.8% and 82.9%; P = .13 and P = .25, respectively) in classifying a tumor as malignant or benign. Conclusion The developed multitask deep learning model allowed for accurate and simultaneous bounding box placement, segmentation, and classification of primary bone tumors on radiographs. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Carrino in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山川日月完成签到,获得积分10
1秒前
小谢同学完成签到 ,获得积分10
4秒前
合一海盗完成签到,获得积分10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
10秒前
丘比特应助rrrrrrry采纳,获得10
11秒前
lmm完成签到 ,获得积分10
16秒前
Truman发布了新的文献求助10
16秒前
偷看星星完成签到 ,获得积分10
17秒前
19秒前
19秒前
jiajia完成签到 ,获得积分10
22秒前
24秒前
26秒前
彭于晏应助rrrrrrry采纳,获得10
27秒前
28秒前
30秒前
俏皮的安萱完成签到 ,获得积分10
31秒前
小小发布了新的文献求助50
32秒前
32秒前
32秒前
Tsugo发布了新的文献求助10
33秒前
传奇3应助囡囡采纳,获得10
33秒前
CipherSage应助大绿豆采纳,获得10
34秒前
李志鸿发布了新的文献求助10
34秒前
36秒前
小怪完成签到,获得积分10
36秒前
36秒前
踟蹰发布了新的文献求助10
38秒前
汉堡包应助DDvicky采纳,获得10
40秒前
40秒前
41秒前
43秒前
小怪发布了新的文献求助10
43秒前
45秒前
鲍惜寒发布了新的文献求助10
46秒前
ymr完成签到 ,获得积分10
46秒前
ezekiet完成签到 ,获得积分10
48秒前
痞老板死磕蟹黄堡完成签到 ,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476217
求助须知:如何正确求助?哪些是违规求助? 4577883
关于积分的说明 14363077
捐赠科研通 4505789
什么是DOI,文献DOI怎么找? 2468870
邀请新用户注册赠送积分活动 1456491
关于科研通互助平台的介绍 1430126