分散注意力
计算机科学
工作量
分心驾驶
驾驶模拟器
任务(项目管理)
人机交互
模拟
工程类
心理学
系统工程
神经科学
操作系统
作者
Amy S. McDonnell,K Imberger,Christopher Poulter,Joel M. Cooper
标识
DOI:10.1016/j.trf.2021.09.019
摘要
Abstract This study evaluated the power and sensitivity of several core driver workload measures in order to better understand their use as a component of future driver distraction potential evaluation procedures of the in-vehicle human machine interface (HMI). Driving is a task that requires visual, manual and cognitive resources to perform. Secondary tasks, such as mobile phone use and interaction with in-built navigation, which load onto any of these three processing resources increase driver workload and can lead to impaired driving. Because workload and distraction potential are interrelated, a comprehensive method to assess driver workload that produces valid and predictive results is needed to advance the science of distraction potential evaluation. It is also needed to incorporate into New Car Assessment Program (NCAP) testing regimes. Workload measures of cognitive (DRT [Detection Response Task] Reaction Time), visual (DRT Miss Rate), subjective (NASA-TLX [driver workload questionnaire]), and temporal demand (Task Interaction Time) were collected as participants drove one of 40 vehicles while completing a variety of secondary tasks with varying interaction requirements. Of the evaluated measures, variance and power analyses demonstrated that Task Interaction Time is the most sensitive in detecting differences in driver workload between different in-vehicle HMIs, followed by DRT Miss Rate, NASA-TLX and finally DRT Reaction Time. There were relatively weak correlations between each of the four measures. These results suggest that Task Interaction Time, coupled with a reliable visual demand metric such as DRT Miss Rate, eye glance coding, or visual occlusion, more efficiently detect differences in driver workload between different HMIs compared to DRT Reaction Time and the NASA-TLX questionnaire. These results can be used to improve the understanding of the utility of each of these core driver workload measures in assessing driver distraction potential.
科研通智能强力驱动
Strongly Powered by AbleSci AI