已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploring destination image through online reviews: an augmented mining model using latent Dirichlet allocation combined with probabilistic hesitant fuzzy algorithm

计算机科学 潜在Dirichlet分配 旅游 优势和劣势 加权 数据挖掘 概率逻辑 接见者模式 独创性 数据科学 机器学习 人工智能 运筹学 主题模型 地理 数学 医学 认识论 放射科 哲学 考古 程序设计语言 法学 政治学 创造力
作者
Yuyan Luo,Tao Tong,Xiaoxu Zhang,Zheng Yang,Ling Li
出处
期刊:Kybernetes [Emerald (MCB UP)]
卷期号:52 (3): 874-897 被引量:19
标识
DOI:10.1108/k-07-2021-0584
摘要

Purpose In the era of information overload, the density of tourism information and the increasingly sophisticated information needs of consumers have created information confusion for tourists and scenic-area managers. The study aims to help scenic-area managers determine the strengths and weaknesses in the development process of scenic areas and to solve the practical problem of tourists' difficulty in quickly and accurately obtaining the destination image of a scenic area and finding a scenic area that meets their needs. Design/methodology/approach The study uses a variety of machine learning methods, namely, the latent Dirichlet allocation (LDA) theme extraction model, term frequency-inverse document frequency (TF-IDF) weighting method and sentiment analysis. This work also incorporates probabilistic hesitant fuzzy algorithm (PHFA) in multi-attribute decision-making to form an enhanced tourism destination image mining and analysis model based on visitor expression information. The model is intended to help managers and visitors identify the strengths and weaknesses in the development of scenic areas. Jiuzhaigou is used as an example for empirical analysis. Findings In the study, a complete model for the mining analysis of tourism destination image was constructed, and 24,222 online reviews on Jiuzhaigou, China were analyzed in text. The results revealed a total of 10 attributes and 100 attribute elements. From the identified attributes, three negative attributes were identified, namely, crowdedness, tourism cost and accommodation environment. The study provides suggestions for tourists to select attractions and offers recommendations and improvement measures for Jiuzhaigou in terms of crowd control and post-disaster reconstruction. Originality/value Previous research in this area has used small sample data for qualitative analysis. Thus, the current study fills this gap in the literature by proposing a machine learning method that incorporates PHFA through the combination of the ideas of management and multi-attribute decision theory. In addition, the study considers visitors' emotions and thematic preferences from the perspective of their expressed information, based on which the tourism destination image is analyzed. Optimization strategies are provided to help managers of scenic spots in their decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心叫兽发布了新的文献求助10
2秒前
2秒前
小钱完成签到,获得积分10
2秒前
Dryu完成签到,获得积分20
3秒前
彭于晏应助jiafang采纳,获得10
3秒前
ぴいい完成签到,获得积分10
4秒前
4秒前
4秒前
JamesPei应助yiluyouni采纳,获得10
5秒前
renovel完成签到,获得积分10
5秒前
风中的芷蕾完成签到,获得积分20
6秒前
卫芷文发布了新的文献求助10
6秒前
7秒前
Ava应助危机的尔琴采纳,获得10
7秒前
包惜筠完成签到 ,获得积分10
8秒前
开心叫兽完成签到,获得积分10
8秒前
落俗完成签到,获得积分10
9秒前
9秒前
9秒前
wanci应助ruru采纳,获得10
10秒前
10秒前
15秒前
舒服的高山完成签到,获得积分10
17秒前
田様应助王晨灿采纳,获得10
17秒前
18秒前
FashionBoy应助kevin采纳,获得10
20秒前
yiluyouni发布了新的文献求助10
20秒前
20秒前
英姑应助健康的宛菡采纳,获得10
21秒前
21秒前
22秒前
华仔应助一张纸采纳,获得10
23秒前
共享精神应助JH采纳,获得10
23秒前
英俊的铭应助樱桃采纳,获得10
24秒前
25秒前
26秒前
onetec发布了新的文献求助20
26秒前
xxfsx应助北北北采纳,获得10
26秒前
隐形曼青应助明亮不乐采纳,获得10
27秒前
JJ发布了新的文献求助10
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454635
求助须知:如何正确求助?哪些是违规求助? 4561964
关于积分的说明 14284045
捐赠科研通 4485792
什么是DOI,文献DOI怎么找? 2457038
邀请新用户注册赠送积分活动 1447677
关于科研通互助平台的介绍 1422913