Intracortical probe arrays with silicon backbone and microelectrodes on thin polyimide wings enable long-term stable recordings in vivo

微电极 多电极阵列 材料科学 薄脆饼 电极 脑植入物 生物医学工程 海马结构 制作 硅酮 纳米技术 电极阵列 计算机科学 光电子学 化学 神经科学 工程类 物理化学 复合材料 病理 生物 医学 替代医学
作者
Antje Kilias,Yu‐Tao Lee,Ulrich P. Froriep,Charlotte Sielaff,Dominik Moser,Tobias Holzhammer,Ulrich Egert,Weileun Fang,Oliver Paul,Patrick Ruther
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (6): 066026-066026 被引量:5
标识
DOI:10.1088/1741-2552/ac39b7
摘要

Abstract Objective. Recording and stimulating neuronal activity across different brain regions requires interfacing at multiple sites using dedicated tools while tissue reactions at the recording sites often prevent their successful long-term application. This implies the technological challenge of developing complex probe geometries while keeping the overall footprint minimal, and of selecting materials compatible with neural tissue. While the potential of soft materials in reducing tissue response is uncontested, the implantation of these materials is often limited to reliably target neuronal structures across large brain volumes. Approach. We report on the development of a new multi-electrode array exploiting the advantages of soft and stiff materials by combining 7- µ m-thin polyimide wings carrying platinum electrodes with a silicon backbone enabling a safe probe implantation. The probe fabrication applies microsystems technologies in combination with a temporal wafer fixation method for rear side processing, i.e. grinding and deep reactive ion etching, of slender probe shanks and electrode wings. The wing-type neural probes are chronically implanted into the entorhinal-hippocampal formation in the mouse for in vivo recordings of freely behaving animals. Main results. Probes comprising the novel wing-type electrodes have been realized and characterized in view of their electrical performance and insertion capability. Chronic electrophysiological in vivo recordings of the entorhinal-hippocampal network in the mouse of up to 104 days demonstrated a stable yield of channels containing identifiable multi-unit and single-unit activity outperforming probes with electrodes residing on a Si backbone. Significance. The innovative fabrication process using a process compatible, temporary wafer bonding allowed to realize new Michigan-style probe arrays. The wing-type probe design enables a precise probe insertion into brain tissue and long-term stable recordings of unit activity due to the application of a stable backbone and 7- µ m-thin probe wings provoking locally a minimal tissue response and protruding from the glial scare of the backbone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
百事从欢完成签到,获得积分10
2秒前
2秒前
Orange应助何雨航采纳,获得10
3秒前
3秒前
CodeCraft应助啊甘呢采纳,获得10
4秒前
自觉的诺言完成签到,获得积分10
4秒前
5秒前
LX完成签到 ,获得积分10
6秒前
8秒前
8秒前
lily完成签到,获得积分10
8秒前
李微发布了新的文献求助50
8秒前
9秒前
阿独发布了新的文献求助10
9秒前
Sera发布了新的文献求助10
9秒前
充电宝应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得30
10秒前
感动友桃应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
万能图书馆应助韩凡采纳,获得10
10秒前
10秒前
事上炼应助科研通管家采纳,获得10
11秒前
changping应助科研通管家采纳,获得150
11秒前
rrjl发布了新的文献求助10
11秒前
11秒前
积极向上的阿闯完成签到,获得积分10
11秒前
farmeryxt应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得20
11秒前
所所应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
xxfsx应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
嘿嘿应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299311
求助须知:如何正确求助?哪些是违规求助? 4447519
关于积分的说明 13843004
捐赠科研通 4333113
什么是DOI,文献DOI怎么找? 2378534
邀请新用户注册赠送积分活动 1373842
关于科研通互助平台的介绍 1339360