Discriminating Heterogeneous Trajectories of Resilience and Depression After Major Life Stressors Using Polygenic Scores

压力源 心理弹性 重性抑郁障碍 心理学 纵向研究 队列 萧条(经济学) 临床心理学 医学 精神科 内科学 心情 病理 经济 心理治疗师 宏观经济学
作者
Katharina Schultebraucks,Karmel W. Choi,Isaac R. Galatzer‐Levy,George A. Bonanno
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:78 (7): 744-744 被引量:46
标识
DOI:10.1001/jamapsychiatry.2021.0228
摘要

Major life stressors, such as loss and trauma, increase the risk of depression. It is known that individuals show heterogeneous trajectories of depressive symptoms following major life stressors, including chronic depression, recovery, and resilience. Although common genetic variation has been associated with depression risk, genomic factors that could help discriminate trajectories of risk vs resilience following adversity have not been identified.To assess the discriminatory accuracy of a deep neural net combining joint information from 21 psychiatric and health-related multiple polygenic scores (PGSs) for discriminating resilience vs other longitudinal symptom trajectories with use of longitudinal, genetically informed data on adults exposed to major life stressors.The Health and Retirement Study is a longitudinal panel cohort study in US citizens older than 50 years, with data being collected once every 2 years between 1992 and 2010. A total of 2071 participants who were of European ancestry with available depressive symptom trajectory information after experiencing an index depressogenic major life stressor were included. Latent growth mixture modeling identified heterogeneous trajectories of depressive symptoms before and after major life stressors, including stable low symptoms (ie, resilience), as well as improving, emergent, and preexisting/chronic symptom patterns. Twenty-one PGSs were examined as factors distinctively associated with these heterogeneous trajectories. Local interpretable model-agnostic explanations were applied to examine PGSs associated with each trajectory. Data were analyzed using the DNN model from June to July 2020.Development of depression and resilience were examined in older adults after a major life stressor, such as bereavement, divorce, and job loss, or major health events, such as myocardial infarction and cancer.Discriminatory accuracy of a deep neural net model trained for the multinomial classification of 4 distinct trajectories of depressive symptoms (Center for Epidemiologic Studies-Depression scale) based on 21 PGSs using supervised machine learning.Of the 2071 participants, 1329 were women (64.2%); mean (SD) age was 55.96 (8.52) years. Of these, 1638 (79.1%) were classified as resilient, 160 (7.75) in recovery (improving), 159 (7.7%) with emerging depression, and 114 (5.5%) with preexisting/chronic depression symptoms. Deep neural nets distinguished these 4 trajectories with high discriminatory accuracy (multiclass micro-average area under the curve, 0.88; 95% CI, 0.87-0.89; multiclass macro-average area under the curve, 0.86; 95% CI, 0.85-0.87). Discriminatory accuracy was highest for preexisting/chronic depression (AUC 0.93), followed by emerging depression (AUC 0.88), recovery (AUC 0.87), resilience (AUC 0.75).The results of the longitudinal cohort study suggest that multivariate PGS profiles provide information to accurately distinguish between heterogeneous stress-related risk and resilience phenotypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妮儿发布了新的文献求助10
刚刚
妮儿完成签到,获得积分10
10秒前
MchemG举报ghy求助涉嫌违规
14秒前
南风知我意完成签到,获得积分10
17秒前
kun关注了科研通微信公众号
18秒前
Lynn完成签到 ,获得积分10
18秒前
张雯悦完成签到,获得积分20
20秒前
21秒前
张雯悦发布了新的文献求助10
26秒前
手抓饼啊发布了新的文献求助10
26秒前
酷波er应助张雯悦采纳,获得10
34秒前
搜集达人应助霍师傅采纳,获得10
34秒前
34秒前
1111发布了新的文献求助10
34秒前
Lucas选李华完成签到 ,获得积分10
35秒前
整齐晓筠完成签到,获得积分20
35秒前
莫茹完成签到 ,获得积分10
39秒前
刘佳敏发布了新的文献求助10
39秒前
啊是是是发布了新的文献求助20
41秒前
创不可贴完成签到,获得积分10
42秒前
44秒前
科研通AI2S应助kun采纳,获得10
44秒前
聪慧雪糕发布了新的文献求助10
48秒前
积极冷霜完成签到,获得积分10
52秒前
润润轩轩完成签到 ,获得积分10
53秒前
小玉发布了新的文献求助10
54秒前
55秒前
一只盒子发布了新的文献求助10
55秒前
雪白的南晴完成签到,获得积分10
55秒前
56秒前
CipherSage应助zzz采纳,获得10
58秒前
天明完成签到,获得积分10
59秒前
聪慧雪糕发布了新的文献求助10
1分钟前
1分钟前
陈文娜完成签到,获得积分10
1分钟前
1分钟前
天天快乐应助聪慧雪糕采纳,获得10
1分钟前
科研通AI2S应助无聊的蚊采纳,获得10
1分钟前
青雉完成签到,获得积分10
1分钟前
晚风完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779759
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10221975
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549