Machine Learning for Early Lung Cancer Identification Using Routine Clinical and Laboratory Data

医学 肺癌 鉴定(生物学) 医学物理学 重症监护医学 机器学习 人工智能 肿瘤科 计算机科学 植物 生物
作者
Michael K. Gould,Brian Huang,Martin C. Tammemägi,Yaron Kinar,Ron Shiff
出处
期刊:American Journal of Respiratory and Critical Care Medicine [American Thoracic Society]
卷期号:204 (4): 445-453 被引量:76
标识
DOI:10.1164/rccm.202007-2791oc
摘要

Rationale: Most lung cancers are diagnosed at an advanced stage. Presymptomatic identification of high-risk individuals can prompt earlier intervention and improve long-term outcomes. Objectives: To develop a model to predict a future diagnosis of lung cancer on the basis of routine clinical and laboratory data by using machine learning. Methods: We assembled data from 6,505 case patients with non-small cell lung cancer (NSCLC) and 189,597 contemporaneous control subjects and compared the accuracy of a novel machine learning model with a modified version of the well-validated 2012 Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial risk model (mPLCOm2012), by using the area under the receiver operating characteristic curve (AUC), sensitivity, and diagnostic odds ratio (OR) as measures of model performance. Measurements and Main Results: Among ever-smokers in the test set, a machine learning model was more accurate than the mPLCOm2012 for identifying NSCLC 9-12 months before clinical diagnosis (P < 0.00001) and demonstrated an AUC of 0.86, a diagnostic OR of 12.3, and a sensitivity of 40.1% at a predefined specificity of 95%. In comparison, the mPLCOm2012 demonstrated an AUC of 0.79, an OR of 7.4, and a sensitivity of 27.9% at the same specificity. The machine learning model was more accurate than standard eligibility criteria for lung cancer screening and more accurate than the mPLCOm2012 when applied to a screening-eligible population. Influential model variables included known risk factors and novel predictors such as white blood cell and platelet counts. Conclusions: A machine learning model was more accurate for early diagnosis of NSCLC than either standard eligibility criteria for screening or the mPLCOm2012, demonstrating the potential to help prevent lung cancer deaths through early detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Edward chan发布了新的文献求助10
2秒前
勤奋的鲂发布了新的文献求助30
2秒前
ding应助眠眠羊采纳,获得10
4秒前
4秒前
mmd发布了新的文献求助10
4秒前
5秒前
95发布了新的文献求助30
5秒前
科研通AI2S应助asd0817采纳,获得10
6秒前
bym发布了新的文献求助10
7秒前
xc完成签到,获得积分10
7秒前
7秒前
7秒前
Chao123_发布了新的文献求助10
8秒前
充电宝应助Mandy采纳,获得10
9秒前
10秒前
DW关注了科研通微信公众号
10秒前
11秒前
llmmnn完成签到,获得积分10
11秒前
wu发布了新的文献求助10
11秒前
十三发布了新的文献求助10
11秒前
11秒前
科目三应助旺旺大李包采纳,获得10
12秒前
欢喜雪瑶发布了新的文献求助10
12秒前
传奇3应助yyyyyyyyyy采纳,获得10
14秒前
科研通AI2S应助xu_teng采纳,获得10
14秒前
15秒前
gaodayu发布了新的文献求助10
15秒前
爆米花应助mmnn采纳,获得10
15秒前
深见发布了新的文献求助10
17秒前
SciGPT应助人不犯二枉少年采纳,获得10
17秒前
17秒前
bubbles发布了新的文献求助10
17秒前
ZhouYW应助开心采纳,获得20
18秒前
酷波er应助bym采纳,获得10
19秒前
wu完成签到,获得积分10
19秒前
三只保全完成签到,获得积分10
20秒前
TszPok完成签到,获得积分10
20秒前
所所应助哼哼采纳,获得10
21秒前
巳巳如意丶完成签到,获得积分10
21秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806767
求助须知:如何正确求助?哪些是违规求助? 3351517
关于积分的说明 10354367
捐赠科研通 3067322
什么是DOI,文献DOI怎么找? 1684457
邀请新用户注册赠送积分活动 809699
科研通“疑难数据库(出版商)”最低求助积分说明 765606