已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Phosphorylation regulates arginine-rich RNA-binding protein solubility and oligomerization

精氨酸 磷酸化 化学 核糖核酸 生物化学 溶解度 RNA结合蛋白 细胞生物学 氨基酸 生物 基因 有机化学
作者
Sean R. Kundinger,Eric B. Dammer,Luming Yin,Cheyenne Hurst,Sarah Shapley,Lingyan Ping,Sohail Khoshnevis,Homa Ghalei,Duc M. Duong,Nicholas T. Seyfried
出处
期刊:Journal of Biological Chemistry [Elsevier]
卷期号:297 (5): 101306-101306 被引量:5
标识
DOI:10.1016/j.jbc.2021.101306
摘要

Posttranslational modifications (PTMs) such as phosphorylation of RNA-binding proteins (RBPs) regulate several critical steps in RNA metabolism, including spliceosome assembly, alternative splicing, and mRNA export. Notably, serine-/arginine- (SR)-rich RBPs are densely phosphorylated compared with the remainder of the proteome. Previously, we showed that dephosphorylation of the splicing factor SRSF2 regulated increased interactions with similar arginine-rich RBPs U1-70K and LUC7L3. However, the large-scale functional and structural impact of these modifications on RBPs remains unclear. In this work, we dephosphorylated nuclear extracts using phosphatase in vitro and analyzed equal amounts of detergent-soluble and -insoluble fractions by mass-spectrometry-based proteomics. Correlation network analysis resolved 27 distinct modules of differentially soluble nucleoplasm proteins. We found classes of arginine-rich RBPs that decrease in solubility following dephosphorylation and enrich the insoluble pelleted fraction, including the SR protein family and the SR-like LUC7L RBP family. Importantly, increased insolubility was not observed across broad classes of RBPs. We determined that phosphorylation regulated SRSF2 structure, as dephosphorylated SRSF2 formed high-molecular-weight oligomeric species in vitro. Reciprocally, phosphorylation of SRSF2 by serine/arginine protein kinase 2 (SRPK2) in vitro decreased high-molecular-weight SRSF2 species formation. Furthermore, upon pharmacological inhibition of SRPKs in mammalian cells, we observed SRSF2 cytoplasmic mislocalization and increased formation of cytoplasmic granules as well as cytoplasmic tubular structures that associated with microtubules by immunocytochemical staining. Collectively, these findings demonstrate that phosphorylation may be a critical modification that prevents arginine-rich RBP insolubility and oligomerization. Posttranslational modifications (PTMs) such as phosphorylation of RNA-binding proteins (RBPs) regulate several critical steps in RNA metabolism, including spliceosome assembly, alternative splicing, and mRNA export. Notably, serine-/arginine- (SR)-rich RBPs are densely phosphorylated compared with the remainder of the proteome. Previously, we showed that dephosphorylation of the splicing factor SRSF2 regulated increased interactions with similar arginine-rich RBPs U1-70K and LUC7L3. However, the large-scale functional and structural impact of these modifications on RBPs remains unclear. In this work, we dephosphorylated nuclear extracts using phosphatase in vitro and analyzed equal amounts of detergent-soluble and -insoluble fractions by mass-spectrometry-based proteomics. Correlation network analysis resolved 27 distinct modules of differentially soluble nucleoplasm proteins. We found classes of arginine-rich RBPs that decrease in solubility following dephosphorylation and enrich the insoluble pelleted fraction, including the SR protein family and the SR-like LUC7L RBP family. Importantly, increased insolubility was not observed across broad classes of RBPs. We determined that phosphorylation regulated SRSF2 structure, as dephosphorylated SRSF2 formed high-molecular-weight oligomeric species in vitro. Reciprocally, phosphorylation of SRSF2 by serine/arginine protein kinase 2 (SRPK2) in vitro decreased high-molecular-weight SRSF2 species formation. Furthermore, upon pharmacological inhibition of SRPKs in mammalian cells, we observed SRSF2 cytoplasmic mislocalization and increased formation of cytoplasmic granules as well as cytoplasmic tubular structures that associated with microtubules by immunocytochemical staining. Collectively, these findings demonstrate that phosphorylation may be a critical modification that prevents arginine-rich RBP insolubility and oligomerization. RNA-binding proteins (RBPs) cooperatively engage both RNA and protein (1Gebauer F. Schwarzl T. Valcárcel J. Hentze M.W. RNA-binding proteins in human genetic disease.Nat. Rev. Genet. 2021; 22: 185-198Crossref PubMed Scopus (90) Google Scholar). RBPs frequently contain an RNA-binding domain, typically K-homology (KH), or RNA recognition motif (RRM) domains, which allow the RBP to achieve sequence-specific binding to target RNA molecules (2Hentze M.W. Castello A. Schwarzl T. Preiss T. A brave new world of RNA-binding proteins.Nat. Rev. Mol. Cell Biol. 2018; 19: 327-341Crossref PubMed Scopus (607) Google Scholar). Unbiased RNA interactome studies have identified many RBPs containing low-complexity (LC) domains that participate in both RNA and protein interactions (2Hentze M.W. Castello A. Schwarzl T. Preiss T. A brave new world of RNA-binding proteins.Nat. Rev. Mol. Cell Biol. 2018; 19: 327-341Crossref PubMed Scopus (607) Google Scholar, 3Castello A. Fischer B. Eichelbaum K. Horos R. Beckmann B.M. Strein C. Davey N.E. Humphreys D.T. Preiss T. Steinmetz L.M. Krijgsveld J. Hentze M.W. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins.Cell. 2012; 149: 1393-1406Abstract Full Text Full Text PDF PubMed Scopus (1300) Google Scholar, 4Baltz A.G. Munschauer M. Schwanhäusser B. Vasile A. Murakawa Y. Schueler M. Youngs N. Penfold-Brown D. Drew K. Milek M. Wyler E. Bonneau R. Selbach M. Dieterich C. Landthaler M. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts.Mol. Cell. 2012; 46: 674-690Abstract Full Text Full Text PDF PubMed Scopus (778) Google Scholar, 5Castello A. Fischer B. Frese C.K. Horos R. Alleaume A.M. Foehr S. Curk T. Krijgsveld J. Hentze M.W. Comprehensive identification of RNA-binding domains in human cells.Mol. Cell. 2016; 63: 696-710Abstract Full Text Full Text PDF PubMed Scopus (295) Google Scholar). LC domains are typically composed of a select few residues out of the entire amino acid code, giving rise to protein domains that are intrinsically disordered (6Uversky V.N. Natively unfolded proteins: A point where biology waits for physics.Protein Sci. 2002; 11: 739-756Crossref PubMed Scopus (1478) Google Scholar). However, LC RBPs exist in a dynamic continuum of native states that range from soluble monomers to liquid–liquid phase-separated (LLPS) granules to insoluble fibrils (7Kato M. Han T.W. Xie S. Shi K. Du X. Wu L.C. Mirzaei H. Goldsmith E.J. Longgood J. Pei J. Grishin N.V. Frantz D.E. Schneider J.W. Chen S. Li L. et al.Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels.Cell. 2012; 149: 753-767Abstract Full Text Full Text PDF PubMed Scopus (1214) Google Scholar) in vitro and in vivo (8St George-Hyslop P. Lin J.Q. Miyashita A. Phillips E.C. Qamar S. Randle S.J. Wang G. The physiological and pathological biophysics of phase separation and gelation of RNA binding proteins in amyotrophic lateral sclerosis and fronto-temporal lobar degeneration.Brain Res. 2018; 1693: 11-23Crossref PubMed Scopus (37) Google Scholar). These assembly states are believed to be influenced in large part by RNA molecules (9Molliex A. Temirov J. Lee J. Coughlin M. Kanagaraj A.P. Kim H.J. Mittag T. Taylor J.P. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization.Cell. 2015; 163: 123-133Abstract Full Text Full Text PDF PubMed Scopus (1223) Google Scholar, 10Schwartz Jacob C. Wang X. Podell Elaine R. Cech Thomas R. RNA seeds higher-order assembly of FUS protein.Cell Rep. 2013; 5: 918-925Abstract Full Text Full Text PDF PubMed Scopus (197) Google Scholar) and posttranslational modifications (PTMs) (11Ambadipudi S. Biernat J. Riedel D. Mandelkow E. Zweckstetter M. Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau.Nat. Commun. 2017; 8: 275Crossref PubMed Scopus (309) Google Scholar, 12Monahan Z. Ryan V.H. Janke A.M. Burke K.A. Rhoads S.N. Zerze G.H. O'Meally R. Dignon G.L. Conicella A.E. Zheng W. Best R.B. Cole R.N. Mittal J. Shewmaker F. Fawzi N.L. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity.EMBO J. 2017; 36: 2951-2967Crossref PubMed Scopus (335) Google Scholar). Although the field is beginning to decipher a “molecular grammar” regulating LLPS (13Wang J. Choi J.M. Holehouse A.S. Lee H.O. Zhang X. Jahnel M. Maharana S. Lemaitre R. Pozniakovsky A. Drechsel D. Poser I. Pappu R.V. Alberti S. Hyman A.A. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins.Cell. 2018; 174: 688-699. e16Abstract Full Text Full Text PDF PubMed Scopus (649) Google Scholar), the conditions that give rise to irreversible aggregation are incompletely known. Recently it has been discovered that the progression of several neurodegenerative diseases is promoted by the aggregation of RBPs (14Bai B. Hales C.M. Chen P.C. Gozal Y. Dammer E.B. Fritz J.J. Wang X. Xia Q. Duong D.M. Street C. Cantero G. Cheng D. Jones D.R. Wu Z. Li Y. et al.U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer's disease.Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 16562-16567Crossref PubMed Scopus (185) Google Scholar, 15Hales C.M. Dammer E.B. Deng Q. Duong D.M. Gearing M. Troncoso J.C. Thambisetty M. Lah J.J. Shulman J.M. Levey A.I. Seyfried N.T. Changes in the detergent-insoluble brain proteome linked to amyloid and tau in Alzheimer's disease progression.Proteomics. 2016; 16: 3042-3053Crossref PubMed Scopus (36) Google Scholar, 16Bishof I. Dammer E.B. Duong D.M. Kundinger S.R. Gearing M. Lah J.J. Levey A.I. Seyfried N.T. RNA-binding proteins with basic-acidic dipeptide (BAD) domains self-assemble and aggregate in Alzheimer's disease.J. Biol. Chem. 2018; 293: 11047-11066Abstract Full Text Full Text PDF PubMed Scopus (29) Google Scholar, 17Neumann M. Sampathu D.M. Kwong L.K. Truax A.C. Micsenyi M.C. Chou T.T. Bruce J. Schuck T. Grossman M. Clark C.M. McCluskey L.F. Miller B.L. Masliah E. Mackenzie I.R. Feldman H. et al.Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.Science. 2006; 314: 130-133Crossref PubMed Scopus (4288) Google Scholar, 18Neumann M. Rademakers R. Roeber S. Baker M. Kretzschmar H.A. Mackenzie I.R. A new subtype of frontotemporal lobar degeneration with FUS pathology.Brain. 2009; 132: 2922-2931Crossref PubMed Scopus (530) Google Scholar, 19Liu-Yesucevitz L. Lin A.Y. Ebata A. Boon J.Y. Reid W. Xu Y.F. Kobrin K. Murphy G.J. Petrucelli L. Wolozin B. ALS-linked mutations enlarge TDP-43-enriched neuronal RNA granules in the dendritic arbor.J. Neurosci. 2014; 34: 4167-4174Crossref PubMed Scopus (77) Google Scholar, 20Vanderweyde T. Yu H. Varnum M. Liu-Yesucevitz L. Citro A. Ikezu T. Duff K. Wolozin B. Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies.J. Neurosci. 2012; 32: 8270-8283Crossref PubMed Scopus (145) Google Scholar, 21Johnson E.C.B. Carter E.K. Dammer E.B. Duong D.M. Gerasimov E.S. Liu Y. Liu J. Betarbet R. Ping L. Yin L. Serrano G.E. Beach T.G. Peng J. De Jager P.L. Gaiteri C. et al.Large-scale deep multi-layer analysis of Alzheimer’s disease brain reveals strong proteomic disease-related changes not observed at the RNA level.bioRxiv. 2021; ([preprint])https://doi.org/10.1101/2021.04.05.438450Crossref Scopus (0) Google Scholar). Interestingly, LC domains are necessary for RBP LLPS and fibrillization (16Bishof I. Dammer E.B. Duong D.M. Kundinger S.R. Gearing M. Lah J.J. Levey A.I. Seyfried N.T. RNA-binding proteins with basic-acidic dipeptide (BAD) domains self-assemble and aggregate in Alzheimer's disease.J. Biol. Chem. 2018; 293: 11047-11066Abstract Full Text Full Text PDF PubMed Scopus (29) Google Scholar, 19Liu-Yesucevitz L. Lin A.Y. Ebata A. Boon J.Y. Reid W. Xu Y.F. Kobrin K. Murphy G.J. Petrucelli L. Wolozin B. ALS-linked mutations enlarge TDP-43-enriched neuronal RNA granules in the dendritic arbor.J. Neurosci. 2014; 34: 4167-4174Crossref PubMed Scopus (77) Google Scholar, 22Furukawa Y. Kaneko K. Matsumoto G. Kurosawa M. Nukina N. Cross-seeding fibrillation of Q/N-rich proteins offers new pathomechanism of polyglutamine diseases.J. Neurosci. 2009; 29: 5153-5162Crossref PubMed Scopus (74) Google Scholar, 23Waelter S. Boeddrich A. Lurz R. Scherzinger E. Lueder G. Lehrach H. Wanker E.E. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation.Mol. Biol. Cell. 2001; 12: 1393-1407Crossref PubMed Scopus (527) Google Scholar), processes found to be regulated by PTM. LC RBPs are commonly modified by reversible PTM in the physiological milieu (13Wang J. Choi J.M. Holehouse A.S. Lee H.O. Zhang X. Jahnel M. Maharana S. Lemaitre R. Pozniakovsky A. Drechsel D. Poser I. Pappu R.V. Alberti S. Hyman A.A. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins.Cell. 2018; 174: 688-699. e16Abstract Full Text Full Text PDF PubMed Scopus (649) Google Scholar, 24Liu Q. Dreyfuss G. In vivo and in vitro arginine methylation of RNA-binding proteins.Mol. Cell Biol. 1995; 15: 2800-2808Crossref PubMed Scopus (266) Google Scholar), yet in neurodegenerative disease phosphorylation PTMs increasingly occupy RBPs such as TDP-43 (25Ping L. Kundinger S.R. Duong D.M. Yin L. Gearing M. Lah J.J. Levey A.I. Seyfried N.T. Global quantitative analysis of the human brain proteome and phosphoproteome in Alzheimer's disease.Sci. Data. 2020; 7: 315Crossref PubMed Scopus (20) Google Scholar, 26Hasegawa M. Arai T. Nonaka T. Kametani F. Yoshida M. Hashizume Y. Beach T.G. Buratti E. Baralle F. Morita M. Nakano I. Oda T. Tsuchiya K. Akiyama H. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.Ann. Neurol. 2008; 64: 60-70Crossref PubMed Scopus (480) Google Scholar, 27Neumann M. Kwong L.K. Lee E.B. Kremmer E. Flatley A. Xu Y. Forman M.S. Troost D. Kretzschmar H.A. Trojanowski J.Q. Lee V.M. Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies.Acta Neuropathol. 2009; 117: 137-149Crossref PubMed Scopus (347) Google Scholar). It remains unclear whether phosphorylation is a trigger, or rather a consequence, of pathogenic RBP aggregation. A major gap in our understanding of LC RBPs is our inability to accurately map site-specific phosphorylation levels. Recently our group used middle-down proteomic approaches to demonstrate that arginine-rich LC RBPs have high steady-state levels of PTMs, particularly phosphorylation (28Kundinger S.R. Bishof I. Dammer E.B. Duong D.M. Seyfried N.T. Middle-down proteomics reveals dense sites of methylation and phosphorylation in arginine-rich RNA-binding proteins.J. Proteome Res. 2020; 19: 1574-1591Crossref PubMed Scopus (7) Google Scholar). One such group of arginine-rich RBPs with high levels of phosphorylation is the serine-/arginine-rich (SR) splicing factor family of RBPs (29Fu X.D. The superfamily of arginine/serine-rich splicing factors.RNA. 1995; 1: 663-680PubMed Google Scholar). This 12-member RBP family is known to contain at least one RRM RNA-binding domain (30Tacke R. Manley J.L. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities.EMBO J. 1995; 14: 3540-3551Crossref PubMed Scopus (296) Google Scholar) at the N-terminus and a C-terminal arginine-/serine-rich (RS) domain distinguished by an expanded tract of RS dipeptide motifs, a phosphomotif conserved from yeast to humans (3Castello A. Fischer B. Eichelbaum K. Horos R. Beckmann B.M. Strein C. Davey N.E. Humphreys D.T. Preiss T. Steinmetz L.M. Krijgsveld J. Hentze M.W. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins.Cell. 2012; 149: 1393-1406Abstract Full Text Full Text PDF PubMed Scopus (1300) Google Scholar). The most extensively studied regulator of SR protein function is phosphorylation, primarily catalyzed by nuclear cdc2-like kinases (CLKs) (31Colwill K. Pawson T. Andrews B. Prasad J. Manley J.L. Bell J.C. Duncan P.I. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution.EMBO J. 1996; 15: 265-275Crossref PubMed Scopus (464) Google Scholar) and cytoplasmic SR protein kinases (SRPKs) (32Gui J.F. Lane W.S. Fu X.D. A serine kinase regulates intracellular localization of splicing factors in the cell cycle.Nature. 1994; 369: 678-682Crossref PubMed Scopus (451) Google Scholar, 33Wang H.Y. Lin W. Dyck J.A. Yeakley J.M. Songyang Z. Cantley L.C. Fu X.D. SRPK2: A differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells.J. Cell Biol. 1998; 140: 737-750Crossref PubMed Scopus (249) Google Scholar, 34Kannan N. Neuwald A.F. Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2alpha.Protein Sci. 2004; 13: 2059-2077Crossref PubMed Scopus (107) Google Scholar). Phosphorylation regulates nearly every facet of SR protein function, including splicing (35Mermoud J.E. Cohen P. Lamond A.I. Ser/Thr-specific protein phosphatases are required for both catalytic steps of pre-mRNA splicing.Nucleic Acids Res. 1992; 20: 5263-5269Crossref PubMed Scopus (168) Google Scholar), coupling to sites of active transcription (36Misteli T. Cáceres J.F. Clement J.Q. Krainer A.R. Wilkinson M.F. Spector D.L. Serine phosphorylation of SR proteins is required for their recruitment to sites of transcription in vivo.J. Cell Biol. 1998; 143: 297-307Crossref PubMed Scopus (205) Google Scholar, 37Misteli T. Cáceres J.F. Spector D.L. The dynamics of a pre-mRNA splicing factor in living cells.Nature. 1997; 387: 523-527Crossref PubMed Scopus (504) Google Scholar), subcellular localization (38Botti V. McNicoll F. Steiner M.C. Richter F.M. Solovyeva A. Wegener M. Schwich O.D. Poser I. Zarnack K. Wittig I. Neugebauer K.M. Muller-McNicoll M. Cellular differentiation state modulates the mRNA export activity of SR proteins.J. Cell Biol. 2017; 216: 1993-2009Crossref PubMed Scopus (36) Google Scholar, 39Yeakley J.M. Tronchère H. Olesen J. Dyck J.A. Wang H.Y. Fu X.D. Phosphorylation regulates in vivo interaction and molecular targeting of serine/arginine-rich pre-mRNA splicing factors.J. Cell Biol. 1999; 145: 447-455Crossref PubMed Scopus (118) Google Scholar, 40Aubol B.E. Serrano P. Fattet L. Wuthrich K. Adams J.A. Molecular interactions connecting the function of the serine-arginine-rich protein SRSF1 to protein phosphatase 1.J. Biol. Chem. 2018; 293: 16751-16760Abstract Full Text Full Text PDF PubMed Scopus (14) Google Scholar), nuclear speckle compartmentalization (31Colwill K. Pawson T. Andrews B. Prasad J. Manley J.L. Bell J.C. Duncan P.I. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution.EMBO J. 1996; 15: 265-275Crossref PubMed Scopus (464) Google Scholar, 32Gui J.F. Lane W.S. Fu X.D. A serine kinase regulates intracellular localization of splicing factors in the cell cycle.Nature. 1994; 369: 678-682Crossref PubMed Scopus (451) Google Scholar, 41Aubol B.E. Keshwani M.M. Fattet L. Adams J.A. Mobilization of a splicing factor through a nuclear kinase-kinase complex.Biochem. J. 2018; 475: 677-690Crossref PubMed Scopus (16) Google Scholar) and binding partner selection and affinity (30Tacke R. Manley J.L. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities.EMBO J. 1995; 14: 3540-3551Crossref PubMed Scopus (296) Google Scholar, 39Yeakley J.M. Tronchère H. Olesen J. Dyck J.A. Wang H.Y. Fu X.D. Phosphorylation regulates in vivo interaction and molecular targeting of serine/arginine-rich pre-mRNA splicing factors.J. Cell Biol. 1999; 145: 447-455Crossref PubMed Scopus (118) Google Scholar, 42Xiao S.H. Manley J.L. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing.Genes Dev. 1997; 11: 334-344Crossref PubMed Scopus (303) Google Scholar, 43Aubol B.E. Hailey K.L. Fattet L. Jennings P.A. Adams J.A. Redirecting SR protein nuclear trafficking through an allosteric platform.J. Mol. Biol. 2017; 429: 2178-2191Crossref PubMed Scopus (15) Google Scholar). Importantly, it is not fully understood whether excessive, or rather, insufficient phosphorylation alters the stability of SR proteins. Our group (28Kundinger S.R. Bishof I. Dammer E.B. Duong D.M. Seyfried N.T. Middle-down proteomics reveals dense sites of methylation and phosphorylation in arginine-rich RNA-binding proteins.J. Proteome Res. 2020; 19: 1574-1591Crossref PubMed Scopus (7) Google Scholar) and others (40Aubol B.E. Serrano P. Fattet L. Wuthrich K. Adams J.A. Molecular interactions connecting the function of the serine-arginine-rich protein SRSF1 to protein phosphatase 1.J. Biol. Chem. 2018; 293: 16751-16760Abstract Full Text Full Text PDF PubMed Scopus (14) Google Scholar, 44Greig J.A. Nguyen T.A. Lee M. Holehouse A.S. Posey A.E. Pappu R.V. Jedd G. Arginine-enriched mixed-charge domains provide Cohesion for nuclear speckle condensation.Mol. Cell. 2020; 77: 1237-1250.e4Abstract Full Text Full Text PDF PubMed Scopus (48) Google Scholar, 45Cho S. Hoang A. Sinha R. Zhong X.Y. Fu X.D. Krainer A.R. Ghosh G. Interaction between the RNA binding domains of Ser-Arg splicing factor 1 and U1-70K snRNP protein determines early spliceosome assembly.Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 8233-8238Crossref PubMed Scopus (129) Google Scholar, 46Peng T.Y. Lee K.R. Tarn W.Y. Phosphorylation of the arginine/serine dipeptide-rich motif of the severe acute respiratory syndrome coronavirus nucleocapsid protein modulates its multimerization, translation inhibitory activity and cellular localization.FEBS J. 2008; 275: 4152-4163Crossref PubMed Scopus (86) Google Scholar) suggest that SR proteins may increasingly bind together and aggregate when insufficiently phosphorylated. Importantly, SR proteins and proteins that harbor homologous domains can aggregate under native conditions (47Nikolakaki E. Drosou V. Sanidas I. Peidis P. Papamarcaki T. Iakoucheva L.M. Giannakouros T. RNA association or phosphorylation of the RS domain prevents aggregation of RS domain-containing proteins.Biochim. Biophys. Acta. 2008; 1780: 214-225Crossref PubMed Scopus (28) Google Scholar). Collectively, these data support a hypothesis that dephosphorylation would result in SR proteins becoming insoluble, as well as those RBPs with SR-like LC domains. Here, we sought to understand the role of phosphorylation in regulating RBP solubility. We enriched for RBPs by biochemical fractionation from mammalian cell lines and incubated with calf intestinal alkaline phosphatase (CIP), which catalyzes the removal of phosphate PTMs from proteins (48Robison R. The possible significance of hexosephosphoric Esters in ossification.Biochem. J. 1923; 17: 286-293Crossref PubMed Google Scholar). We conducted liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) on detergent-soluble and -insoluble pellet fractions of dephosphorylated and mock-treated nucleoplasm extracts and used a network-based approach to identify groups of RBPs that exhibited similar solubility changes that were regulated by phosphorylation. Importantly, we found that SRSF2 and related SR proteins coaggregated to the insoluble fraction, while other nuclear RBPs such as TDP-43 did not. Moreover, we found that phosphorylation regulates SRSF2 assembly states in vitro. Finally, we show that pharmacological SRPK inhibition in cells results in an increase in the number of cells harboring cytoplasmic SRSF2 granules as well as filamentous-like structures that colocalize with microtubules. Collectively, this work reinforces phosphorylation as an important regulator of SR protein solubility and structure and suggests that phosphorylation may be a preventative cellular mechanism against arginine-rich RBP aggregation. Here, we use SRSF2 as a paradigm to study the regulation of arginine-rich RBP solubility, structure, and morphology by phosphorylation. In SRSF2, the arginine-/serine-rich (RS) domain is highly phosphorylated (28Kundinger S.R. Bishof I. Dammer E.B. Duong D.M. Seyfried N.T. Middle-down proteomics reveals dense sites of methylation and phosphorylation in arginine-rich RNA-binding proteins.J. Proteome Res. 2020; 19: 1574-1591Crossref PubMed Scopus (7) Google Scholar), a region with high probability of intrinsic disorder (Fig. S1A) (49Jones D.T. Cozzetto D. DISOPRED3: Precise disordered region predictions with annotated protein-binding activity.Bioinformatics. 2015; 31: 857-863Crossref PubMed Scopus (455) Google Scholar, 50Haynes C. Iakoucheva L.M. Serine/arginine-rich splicing factors belong to a class of intrinsically disordered proteins.Nucleic Acids Res. 2006; 34: 305-312Crossref PubMed Scopus (80) Google Scholar). We incubated lysates containing recombinant SRSF2-myc, a known phosphoprotein, with CIP, which corresponded to a lower-molecular-weight SRSF2 band (Fig. S1B) by SDS-PAGE, suggesting substantial dephosphorylation of SRSF2 (51Keshwani M.M. Aubol B.E. Fattet L. Ma C.T. Qiu J. Jennings P.A. Fu X.D. Adams J.A. Conserved proline-directed phosphorylation regulates SR protein conformation and splicing function.Biochem. J. 2015; 466: 311-322Crossref PubMed Scopus (28) Google Scholar, 52Aubol B.E. Wu G. Keshwani M.M. Movassat M. Fattet L. Hertel K.J. Fu X.D. Adams J.A. Release of SR proteins from CLK1 by SRPK1: A symbiotic kinase system for phosphorylation control of pre-mRNA splicing.Mol. Cell. 2016; 63: 218-228Abstract Full Text Full Text PDF PubMed Scopus (51) Google Scholar). To further validate dephosphorylation of SRSF2, we immunoblotted with an antibody raised against the C-terminus of SRSF2 that preferentially labels hypophosphorylated SRSF2 (hypoSRSF2) (53Saitoh N. Sakamoto C. Hagiwara M. Agredano-Moreno L.T. Jiménez-García L.F. Nakao M. The distribution of phosphorylated SR proteins and alternative splicing are regulated by RANBP2.Mol. Biol. Cell. 2012; 23: 1115-1128Crossref PubMed Scopus (23) Google Scholar, 54Cavaloc Y. Bourgeois C.F. Kister L. Stévenin J. The splicing factors 9G8 and SRp20 transactivate splicing through different and specific enhancers.RNA. 1999; 5: 468-483Crossref PubMed Scopus (175) Google Scholar, 55Kadri F. Pacifici M. Wilk A. Parker-Struckhoff A. Del Valle L. Hauser K.F. Knapp P.E. Parsons C. Jeansonne D. Lassak A. Peruzzi F. HIV-1-Tat protein inhibits SC35-mediated tau Exon 10 inclusion through up-regulation of DYRK1A kinase.J. Biol. Chem. 2015; 290: 30931-30946Abstract Full Text Full Text PDF PubMed Scopus (17) Google Scholar) (Fig. S1C) and again observed increased migration of SRSF2. Furthermore, we saw an increase in hypoSRSF2 immunoreactivity, demonstrating that SRSF2 is indeed dephosphorylated. We then asked whether phosphorylation regulates the solubility of SRSF2. Detergent-soluble (S) and -insoluble pelleted (P) fractions were isolated following mock (−CIP) or phosphatase (+CIP) treatment (Fig. 1A). We resolved equal amounts of total (T), soluble (S), and pelleted (P) fractions by SDS-PAGE and immunoblotted for SRSF2-myc (Fig. 1B). Labeling of each fraction with the hypoSRSF2 antibody confirmed that the pellet fraction was enriched with hypoSRSF2 species (Fig. S1D). While phosphorylated SRSF2-myc was primarily soluble (68% of total) in the mock condition, dephosphorylated SRSF2-myc significantly decreased in solubility, enriching to the detergent-insoluble pellet fraction (89% of total, Fig. 1C). This suggests that in addition to SRSF2, similar arginine-rich RBPs or groups of RBPs may experience altered solubility following dephosphorylation. We next sought to globally identify and quantify RBPs that aggregate following dephosphorylation. Following dephosphorylation, the soluble and insoluble (i.e., pellet) samples were analyzed by label-free quantitative proteomics, using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in biological quadruplicate (Fig. 1A, Table S1). Notably, dephosphorylation did not induce global aggregation of the nuclear proteome, as insoluble pellet fraction protein concentrations were unchanged after phosphatase incubation (Table S2). Following database search and removal of proteins with >50% missing values and single peptide identifications, we identified 4120 unique proteins (Table S3 and S4). To discover proteins with the largest change in solubility following dephosphorylation, we calculated the log2 fold differences of fraction insoluble values between phosphatase and mock treatments and visualized this as a volcano plot (Fig. 1D, Tables S4 and S5). Proteins were highlighted with increased or decreased insolubility if at least a twofold increase or decrease in fraction insoluble values, respectively, was observed with a p value less than 0.05 (two-tailed paired t test). Relatively few proteins (n = 10) enriched to the soluble fraction following dephosphorylation. In contrast, many more proteins (n = 734) experienced increased aggregation following dephosphorylation. To ask whether serine-/arginine-rich (SR) proteins were enriched within this group, we performed a homology search of the RS domain of SRSF2 using the protein BLAST tool. We identified several proteins with high homology to the RS domain of SRSF2 (n = 193), including other SR proteins (SRSF3/4/5/6/7), as well as the SR-like proteins SRRM1 and LUC7L3 (Fig. S2A, Table S6). Using a one-dimensional hypergeometric Fisher’s exact test (FET) analysis, we concluded that the SR/SR-like group was significantly enriched to the list of proteins that experienced significantly decreased solubility following dephosphorylation (BH-corrected p value = 0.0132) (Fig. S2B). These observations suggest that phosphorylation is an important PTM that regulates the solubility of SRSF2, as well as the solubilities of similar arginine-/serine-rich RBPs. Phosphorylation significantly alt
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1293254923完成签到,获得积分10
刚刚
Z小姐完成签到 ,获得积分10
2秒前
旧城旧巷等旧人完成签到 ,获得积分10
3秒前
陶醉果汁发布了新的文献求助10
4秒前
4秒前
嗯哼完成签到 ,获得积分10
6秒前
yummy小明8888完成签到 ,获得积分10
8秒前
gstaihn完成签到 ,获得积分10
9秒前
wb关注了科研通微信公众号
9秒前
范范范完成签到,获得积分10
9秒前
孤独代亦发布了新的文献求助10
9秒前
燕尔蓝完成签到,获得积分10
13秒前
13秒前
我睡觉的时候不困完成签到 ,获得积分10
14秒前
大模型应助小劲劲采纳,获得10
14秒前
Stephen完成签到,获得积分10
14秒前
沐沐羚完成签到,获得积分10
15秒前
LL完成签到 ,获得积分10
15秒前
16秒前
慕青应助kalala采纳,获得10
17秒前
18秒前
晨曦微露发布了新的文献求助20
18秒前
mmyhn完成签到,获得积分10
19秒前
hzb发布了新的文献求助10
20秒前
20秒前
25发布了新的文献求助10
21秒前
兜里没糖了完成签到 ,获得积分10
22秒前
herpes完成签到 ,获得积分10
22秒前
23秒前
收集快乐完成签到 ,获得积分10
24秒前
24秒前
黎尔蝶发布了新的文献求助10
25秒前
mov完成签到,获得积分10
28秒前
28秒前
热心丹南发布了新的文献求助10
29秒前
orixero应助陶醉果汁采纳,获得10
30秒前
纳兰若微应助pilipuppychan采纳,获得10
32秒前
小鱼完成签到 ,获得积分10
35秒前
momo完成签到,获得积分10
35秒前
wb发布了新的文献求助10
37秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Teaching Social and Emotional Learning in Physical Education 900
The three stars each : the Astrolabes and related texts 550
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
Chinese-English Translation Lexicon Version 3.0 500
少脉山油柑叶的化学成分研究 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2400212
求助须知:如何正确求助?哪些是违规求助? 2100882
关于积分的说明 5296536
捐赠科研通 1828524
什么是DOI,文献DOI怎么找? 911334
版权声明 560198
科研通“疑难数据库(出版商)”最低求助积分说明 487129