Convolutional neural networks for Alzheimer’s disease detection on MRI images

卷积神经网络 体素 人工智能 学习迁移 深度学习 模式识别(心理学) 循环神经网络 计算机科学 人工神经网络 磁共振成像 医学 特征(语言学) 放射科 语言学 哲学
作者
Amir Ebrahimi Ghahnavieh,Siwei Luo,Alzheimer’s Disease Neuroimaging Initiative
出处
期刊:Journal of medical imaging [SPIE]
卷期号:8 (02) 被引量:32
标识
DOI:10.1117/1.jmi.8.2.024503
摘要

Purpose: Detection of Alzheimer's disease (AD) on magnetic resonance imaging (MRI) using convolutional neural networks (CNNs), which is useful for detecting AD in its preliminary states. Approach: Our study implements and compares several deep models and configurations, including two-dimensional (2D) and three-dimensional (3D) CNNs and recurrent neural networks (RNNs). To use a 2D CNN on 3D MRI volumes, each MRI scan is split into 2D slices, neglecting the connection among 2D image slices in an MRI volume. Instead, a CNN model could be followed by an RNN in a way that the model of 2D CNN + RNN can understand the connection among sequences of 2D image slices for an MRI. The issue is that the feature extraction step in the 2D CNN is independent of classification in the RNN. To tackle this, 3D CNNs can be employed instead of 2D CNNs to make voxel-based decisions. Our study's main contribution is to introduce transfer learning from a dataset of 2D images to 3D CNNs. Results: The results on our MRI dataset indicate that sequence-based decisions improve the accuracy of slice-based decisions by 2% in classifying AD patients from healthy subjects. Also the 3D voxel-based method with transfer learning outperforms the other methods with 96.88% accuracy, 100% sensitivity, and 94.12% specificity. Conclusions: Several implementations and experiments using CNNs on MRI scans for AD detection demonstrated that the voxel-based method with transfer learning from ImageNet to MRI datasets using 3D CNNs considerably improved the results compared with the others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Auston_zhong应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
1+1应助科研通管家采纳,获得10
刚刚
jwx应助科研通管家采纳,获得10
刚刚
书生应助科研通管家采纳,获得10
刚刚
yiyimx完成签到,获得积分10
1秒前
2秒前
Xiaoxiao应助yyy_采纳,获得10
2秒前
冰巧完成签到 ,获得积分10
4秒前
双木发布了新的文献求助10
4秒前
搜集达人应助Stting采纳,获得10
4秒前
5秒前
TG_FY完成签到,获得积分10
7秒前
keleboys完成签到 ,获得积分10
8秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
9秒前
shinian完成签到 ,获得积分10
12秒前
洁净的代容完成签到,获得积分10
14秒前
白色的风车完成签到,获得积分10
15秒前
Kevin Huang完成签到 ,获得积分10
15秒前
zyh完成签到 ,获得积分10
17秒前
cfplhys完成签到,获得积分10
19秒前
24秒前
28秒前
29秒前
xianyaoz完成签到 ,获得积分10
29秒前
明哥完成签到,获得积分10
29秒前
鑫儿发布了新的文献求助20
29秒前
qing1245完成签到,获得积分10
30秒前
琉璃完成签到,获得积分10
30秒前
32秒前
zino完成签到,获得积分10
34秒前
shiyousheng完成签到,获得积分10
34秒前
明哥发布了新的文献求助10
34秒前
shiyousheng发布了新的文献求助10
37秒前
Hello应助DQ采纳,获得10
39秒前
海意完成签到,获得积分10
40秒前
Green完成签到,获得积分10
40秒前
研友_VZG7GZ应助一棵草采纳,获得10
42秒前
黄黄黄完成签到,获得积分10
43秒前
46秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671625
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779625
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610180
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093