HPLC fingerprints combined with principal component analysis, hierarchical cluster analysis and linear discriminant analysis for the classification and differentiation of Peganum sp. indigenous to China

骆驼蓬 主成分分析 线性判别分析 高效液相色谱法 化学 化学计量学 色谱法 层次聚类 传统医学 植物 生物 人工智能 计算机科学 医学 聚类分析
作者
Xuemei Cheng,Ting Zhao,Tao Yang,Changhong Wang,S. W. Annie Bligh,Zhengtao Wang
出处
期刊:Phytochemical Analysis [Wiley]
卷期号:21 (3): 279-289 被引量:57
标识
DOI:10.1002/pca.1198
摘要

Abstract Introduction – Seeds of wild Peganum harmala Linn., P . multisectum (Maxim) Bobr., P . nigellastrum Bunge and a probable indeterminate species, herein referred to as P . variety, are commonly used in Chinese medicine. These seeds cannot be differentiated based on morphology. Objective – Seeds of P . harmala Linn., P . multisectum (Maxim) Bobr., P . nigellastrum Bunge and P . variety were collected in different provinces in China and their HPLC profiles were recorded for statistical analysis and pattern recognition. Methodology – HPLC chromatograms of seed extracts were recorded under the same conditions. Individual HPLC chromatograms for each species were evaluated against the mean chromatogram for the same species generated using a similarity evaluation computer program. Data from chromatographic fingerprints were also processed using principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA). Results – The Peganum sp. seed extracts had similar HPLC fingerprints but with some inter‐specific differences. The chromatographic fingerprints combined with PCA, HCA and LDA could distinguish the seeds of the different species of Peganum investigated. Conclusion – HPLC fingerprints can be used to authenticate and differentiate the seeds of three different species of genus Peganum indigenous to China. The results indicated that the unidentified P . variety might indeed be a new species or variety. Copyright © 2009 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助hah采纳,获得30
刚刚
打打应助trxie采纳,获得10
刚刚
怪味薯片发布了新的文献求助10
刚刚
1秒前
1秒前
ceng发布了新的文献求助10
1秒前
梁三柏发布了新的文献求助10
2秒前
搜集达人应助开心浩阑采纳,获得10
2秒前
3秒前
柚木发布了新的文献求助10
4秒前
33完成签到,获得积分10
4秒前
壮观的思远完成签到,获得积分10
4秒前
5秒前
高兴新梅发布了新的文献求助30
5秒前
李健应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
Jiang应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
6秒前
无心的衫完成签到,获得积分10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
大汤圆子发布了新的文献求助10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
nice完成签到,获得积分10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
小白应助科研通管家采纳,获得10
6秒前
AOI完成签到,获得积分10
6秒前
英俊的铭应助科研通管家采纳,获得30
6秒前
7秒前
wanci应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
7秒前
里予完成签到,获得积分10
7秒前
小白应助科研通管家采纳,获得10
7秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3939187
求助须知:如何正确求助?哪些是违规求助? 3485233
关于积分的说明 11031847
捐赠科研通 3215044
什么是DOI,文献DOI怎么找? 1777049
邀请新用户注册赠送积分活动 863257
科研通“疑难数据库(出版商)”最低求助积分说明 798787