Classification of Medicinal Plants Astragalus Mongholicus Bunge and Sophora Flavescens Aiton Using GaoFen-6 and Multitemporal Sentinel-2 Data

苦参 人工智能 计算机科学 数学 生物 苦参碱 神经科学
作者
Congcong Wang,Xiaobo Zhang,Tingting Shi,Chunhong Zhang,Minhui Li
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5
标识
DOI:10.1109/lgrs.2021.3120125
摘要

Accurate information regarding cultivated areas of medicinal plants is useful for taking macro-level decisions for medicinal plant management and contingency plans. In this study, the capabilities and limitations of mapping Astragalus mongholicus Bunge and Sophora flavescens Aiton using GaoFen-6 (GF-6) and multitemporal Sentinel-2 (S-2) data were assessed through a case study in Naiman Banner, Inner Mongolia, China. First, an object-based approach was used to produce a cropland mask based on the GF-6 images. Then, different spectral indices were generated from multitemporal S-2 imagery acquired in 2019, and a temporal phonological pattern analysis was conducted. Subsequently, optimal feature selection was carried out for each of the crops ( A. mongholicus Bunge, S. flavescens Aiton, and Zea mays L.). The selection was performed by sorting all features according to their global separability index and removing those whose contribution to the model accuracy was negligible. Finally, the medicinal crops were distinguished using the random forest classification algorithm. An overall accuracy and a kappa coefficient of 94.51% and 0.90 were achieved, respectively, demonstrating that the synergistic use of time-series GF-6 and S-2 data were more suitable for A. mongholicus Bunge and S. flavescens Aiton mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冰巧完成签到 ,获得积分10
1秒前
2秒前
Ava应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得30
6秒前
Rye227应助科研通管家采纳,获得10
6秒前
Gauss应助科研通管家采纳,获得30
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
6秒前
打打应助科研通管家采纳,获得10
6秒前
6秒前
共享精神应助DJDJ采纳,获得10
6秒前
36524发布了新的文献求助10
6秒前
7秒前
11秒前
科研通AI5应助shenglll采纳,获得40
12秒前
zho发布了新的文献求助10
12秒前
竹筏过海应助pokexuejiao采纳,获得30
13秒前
丘比特应助乔心采纳,获得10
14秒前
不懂发布了新的文献求助10
14秒前
16秒前
17秒前
鱿鱼完成签到,获得积分10
19秒前
CodeCraft应助盛夏采纳,获得20
19秒前
雪白鸿涛发布了新的文献求助10
20秒前
jyy应助超级诗桃采纳,获得10
20秒前
尼克拉倒完成签到,获得积分10
24秒前
今后应助雪白鸿涛采纳,获得10
25秒前
26秒前
27秒前
28秒前
DJDJ完成签到,获得积分20
28秒前
DJDJ发布了新的文献求助10
31秒前
科研通AI5应助啊锋采纳,获得30
34秒前
百变小数完成签到,获得积分10
37秒前
38秒前
无风完成签到,获得积分10
38秒前
liuda完成签到 ,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3327071
关于积分的说明 10229393
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669742
邀请新用户注册赠送积分活动 799258
科研通“疑难数据库(出版商)”最低求助积分说明 758757