Generalizing the Linearized Doubling approach, I: General theory and new minimal surfaces and self-shrinkers

数学 最小曲面 引力奇点 流量平均曲率 西格玛 环面 纯数学 平均曲率 组合数学 数学分析 曲率 几何学 物理 量子力学
作者
Nikolaos Kapouleas,Peter McGrath
出处
期刊:Cambridge journal of mathematics [International Press of Boston, Inc.]
卷期号:11 (2): 299-439 被引量:5
标识
DOI:10.4310/cjm.2023.v11.n2.a1
摘要

In Part I of this article we generalize the Linearized Doubling (LD) approach, introduced in earlier work by NK, by proving a general theorem stating that if $\Sigma$ is a closed minimal surface embedded in a Riemannian three-manifold $(N,g)$ and its Jacobi operator $\mathcal{L}_\Sigma$ has trivial kernel, then given a suitable family of LD solutions on $\Sigma$, a minimal surface resembling two copies of $\Sigma$ joined by many small catenoidal bridges can be constructed by PDE gluing methods. (An LD solution $\varphi$ on $\Sigma$ is a singular solution of the linear equation $\mathcal{L}_\Sigma \varphi =0$ with logarithmic singularities; in the construction the singularities are replaced by catenoidal bridges.) As an example demonstrating the applicability of the theorem we construct new doublings of the Clifford torus. In Part II we construct families of LD solutions for general $(O(2)\times \Z_2)$-symmetric backgrounds $(\Sigma, N,g)$. Combining with the theorem in Part I this implies the construction of new minimal doublings for such backgrounds. (Constructions for general backgrounds remain open.) This generalizes our earlier work for $\Sigma=\Sph^2 \subset N=\Sph^3$ providing new constructions even for that background. In Part III, applying the earlier result -- appropriately modified for the catenoid and the critical catenoid -- we construct new self-shrinkers of the mean curvature flow via doubling the spherical self-shrinker or the Angenent torus, new complete embedded minimal surfaces of finite total curvature in the Euclidean three-space via doubling the catenoid, and new free boundary minimal surfaces in the unit ball via doubling the critical catenoid.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助若影采纳,获得10
2秒前
suix237完成签到,获得积分10
4秒前
阔达的八宝粥完成签到,获得积分10
4秒前
Tovy发布了新的文献求助10
4秒前
丘比特应助TAN采纳,获得30
8秒前
ScholarZmm完成签到,获得积分10
12秒前
13秒前
李健应助Tovy采纳,获得10
16秒前
宁静致远完成签到,获得积分0
19秒前
21秒前
21秒前
Tovy完成签到,获得积分20
23秒前
Jasper应助kelexh采纳,获得10
27秒前
若影发布了新的文献求助10
28秒前
科研通AI5应助龙弟弟采纳,获得10
30秒前
jiang完成签到 ,获得积分10
31秒前
辛谷方松永旭完成签到 ,获得积分10
33秒前
37秒前
贪玩的半仙完成签到,获得积分10
39秒前
39秒前
40秒前
hr完成签到 ,获得积分10
41秒前
阡陌完成签到,获得积分10
42秒前
43秒前
44秒前
44秒前
kelexh发布了新的文献求助10
44秒前
Ss关注了科研通微信公众号
46秒前
46秒前
狂野的若雁完成签到,获得积分20
47秒前
pluto应助科研通管家采纳,获得20
47秒前
科研通AI5应助科研通管家采纳,获得10
47秒前
科研通AI5应助科研通管家采纳,获得10
47秒前
orixero应助科研通管家采纳,获得10
47秒前
丘比特应助科研通管家采纳,获得10
47秒前
情怀应助科研通管家采纳,获得10
47秒前
SciGPT应助科研通管家采纳,获得10
47秒前
我是老大应助科研通管家采纳,获得10
47秒前
niu应助科研通管家采纳,获得10
47秒前
领导范儿应助科研通管家采纳,获得10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323559
关于积分的说明 10214983
捐赠科研通 3038761
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798276
科研通“疑难数据库(出版商)”最低求助积分说明 758315