ISDNet: AI-enabled Instance Segmentation of Aerial Scenes for Smart Cities

计算机科学 人工智能 分割 计算机视觉 背景(考古学) 航空影像 目标检测 深度学习 航空影像 杂乱 解析 图像分割 聚类分析 模式识别(心理学) 图像(数学) 雷达 古生物学 生物 电信
作者
Prateek Garg,Anirudh Chakravarthy,Murari Mandal,Pratik Narang,Vinay Chamola,Mohsen Guizani
出处
期刊:ACM Transactions on Internet Technology [Association for Computing Machinery]
卷期号:21 (3): 1-18 被引量:9
标识
DOI:10.1145/3418205
摘要

Aerial scenes captured by UAVs have immense potential in IoT applications related to urban surveillance, road and building segmentation, land cover classification, and so on, which are necessary for the evolution of smart cities. The advancements in deep learning have greatly enhanced visual understanding, but the domain of aerial vision remains largely unexplored. Aerial images pose many unique challenges for performing proper scene parsing such as high-resolution data, small-scaled objects, a large number of objects in the camera view, dense clustering of objects, background clutter, and so on, which greatly hinder the performance of the existing deep learning methods. In this work, we propose ISDNet (Instance Segmentation and Detection Network), a novel network to perform instance segmentation and object detection on visual data captured by UAVs. This work enables aerial image analytics for various needs in a smart city. In particular, we use dilated convolutions to generate improved spatial context, leading to better discrimination between foreground and background features. The proposed network efficiently reuses the segment-mask features by propagating them from early stages using residual connections. Furthermore, ISDNet makes use of effective anchors to accommodate varying object scales and sizes. The proposed method obtains state-of-the-art results in the aerial context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张瑞彬发布了新的文献求助10
刚刚
ZJ发布了新的文献求助10
刚刚
1秒前
酷酷的平蝶完成签到,获得积分10
1秒前
cq发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
zhou完成签到,获得积分10
2秒前
博博大佬完成签到,获得积分10
2秒前
3秒前
徐徐应助lemon采纳,获得10
3秒前
hh完成签到,获得积分10
4秒前
5秒前
6秒前
不爱喝可乐完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
热心凡雁应助气味采纳,获得10
10秒前
Yyyyyy11发布了新的文献求助10
10秒前
爆米花应助大壮采纳,获得10
10秒前
as完成签到,获得积分10
11秒前
李婷婷发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
geather发布了新的文献求助10
13秒前
13秒前
13秒前
西出钰门发布了新的文献求助30
14秒前
太阳发布了新的文献求助10
14秒前
852应助火星上冬日采纳,获得10
14秒前
14秒前
cccui完成签到,获得积分10
15秒前
CipherSage应助wanwei采纳,获得10
16秒前
天天快乐应助gehao采纳,获得10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790196
求助须知:如何正确求助?哪些是违规求助? 3334887
关于积分的说明 10272750
捐赠科研通 3051350
什么是DOI,文献DOI怎么找? 1674626
邀请新用户注册赠送积分活动 802730
科研通“疑难数据库(出版商)”最低求助积分说明 760846