Polarization-enhanced photocatalytic activity in non-centrosymmetric materials based photocatalysis: A review

光催化 材料科学 极化(电化学) 纳米技术 太阳能 载流子 半导体 能量转换 催化作用 工程物理 光电子学 化学 物理 工程类 物理化学 电气工程 热力学 生物化学
作者
Qiuhui Zhu,Ke Zhang,Danqing Li,Nan Li,Jingkun Xu,Detlef W. Bahnemann,Chuanyi Wang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:426: 131681-131681 被引量:97
标识
DOI:10.1016/j.cej.2021.131681
摘要

The conversion of solar energy into chemical energy through semiconductor-based photocatalysis technology is an appealing strategy towards resolving the energy crisis and environmental pollution issues. However, the practical application of photocatalysis is impeded by its limited photocatalytic efficiency due to the intrinsic nature of photocatalysts, i.e., recombination of photogenerated electrons and holes. To this end, non-centrosymmetric (NCS) based photocatalytic materials including piezoelectrics, pyroelectrics, ferroelectrics and nonlinear optical (NLO) materials are attractive, which can not only convert mechanical energy and temperature fluctuation in the environment besides solar energy into secondary energy, but can also promote the separation of photogenerated charge carriers due to their built-in electric field resultant polarization, thus greatly improving their photocatalytic performance. Here, we first surveyed the recent advances in of NCS-based photocatalytic materials. Further, the correlation of their polarization-related physical properties with their photocatalytic activities and the strategies towards improving polarization of NCS materials were systematically summarized and highlighted, aiming to clarify the correlation of the improvement of polarization with the enhanced photocatalytic performance. Subsequently, the photocatalytic mechanism and multiple applications of photocatalysis in environmental remediation and energy conversion based on NCS materials were presented. Meanwhile, we discussed the remaining challenges for NCS materials and strategies for enhancing their photocatalytic efficiency. Finally, the development trend and future perspectives of NCS photocatalytic materials in environmental chemical engineering is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
百亿发布了新的文献求助10
1秒前
曹姗发布了新的文献求助10
1秒前
melody完成签到,获得积分10
2秒前
wu发布了新的文献求助30
3秒前
烟花应助vghvvjg采纳,获得10
5秒前
小二郎应助快乐的90后fjk采纳,获得20
6秒前
友好寒珊完成签到,获得积分10
7秒前
曹姗完成签到,获得积分10
7秒前
10秒前
科目三应助辛勤幼南采纳,获得10
13秒前
14秒前
14秒前
小权拳的权应助MAK采纳,获得10
15秒前
研友_LN3xyn完成签到,获得积分10
15秒前
可爱的函函应助白小白采纳,获得10
16秒前
momoni完成签到 ,获得积分10
16秒前
优秀的梦旋完成签到,获得积分10
17秒前
欣慰的星月完成签到,获得积分10
18秒前
19秒前
怕黑的无招完成签到,获得积分10
19秒前
PanCiro发布了新的文献求助10
19秒前
20秒前
无问完成签到,获得积分10
21秒前
21秒前
21秒前
VAN喵完成签到,获得积分10
22秒前
23秒前
26秒前
Robylee完成签到,获得积分10
27秒前
个性的冰夏完成签到,获得积分10
27秒前
小虫子发布了新的文献求助20
27秒前
27秒前
27秒前
29秒前
奥特斌发布了新的文献求助10
30秒前
MishimaErika完成签到,获得积分10
31秒前
感动城发布了新的文献求助10
31秒前
fissh完成签到,获得积分10
31秒前
31秒前
微垣发布了新的文献求助10
33秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3907805
求助须知:如何正确求助?哪些是违规求助? 3453653
关于积分的说明 10876359
捐赠科研通 3179586
什么是DOI,文献DOI怎么找? 1756553
邀请新用户注册赠送积分活动 849630
科研通“疑难数据库(出版商)”最低求助积分说明 791667