Heterogeneous graph attention network based on meta-paths for lncRNA–disease association prediction

计算机科学 联想(心理学) 图形 理论计算机科学 人工智能 心理学 心理治疗师
作者
Xiaosa Zhao,Xiaowei Zhao,Minghao Yin
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:55
标识
DOI:10.1093/bib/bbab407
摘要

Discovering long noncoding RNA (lncRNA)-disease associations is a fundamental and critical part in understanding disease etiology and pathogenesis. However, only a few lncRNA-disease associations have been identified because of the time-consuming and expensive biological experiments. As a result, an efficient computational method is of great importance and urgently needed for identifying potential lncRNA-disease associations. With the ability of exploiting node features and relationships in network, graph-based learning models have been commonly utilized by these biomolecular association predictions. However, the capability of these methods in comprehensively fusing node features, heterogeneous topological structures and semantic information is distant from optimal or even satisfactory. Moreover, there are still limitations in modeling complex associations between lncRNAs and diseases.In this paper, we develop a novel heterogeneous graph attention network framework based on meta-paths for predicting lncRNA-disease associations, denoted as HGATLDA. At first, we conduct a heterogeneous network by incorporating lncRNA and disease feature structural graphs, and lncRNA-disease topological structural graph. Then, for the heterogeneous graph, we conduct multiple metapath-based subgraphs and then utilize graph attention network to learn node embeddings from neighbors of these homogeneous and heterogeneous subgraphs. Next, we implement attention mechanism to adaptively assign weights to multiple metapath-based subgraphs and get more semantic information. In addition, we combine neural inductive matrix completion to reconstruct lncRNA-disease associations, which is applied for capturing complicated associations between lncRNAs and diseases. Moreover, we incorporate cost-sensitive neural network into the loss function to tackle the commonly imbalance problem in lncRNA-disease association prediction. Finally, extensive experimental results demonstrate the effectiveness of our proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yo一天完成签到 ,获得积分10
刚刚
秦驿媛发布了新的文献求助10
刚刚
树袋熊完成签到,获得积分10
刚刚
wanci应助PSQ采纳,获得10
刚刚
单身的老太完成签到,获得积分10
1秒前
1秒前
任贱贱发布了新的文献求助10
2秒前
研友_LMrRjn发布了新的文献求助10
3秒前
零九二一发布了新的文献求助10
3秒前
3秒前
4秒前
巴啦啦发布了新的文献求助10
5秒前
5秒前
英姑应助微笑采纳,获得10
6秒前
6秒前
6秒前
7秒前
善学以致用应助陈丹丹采纳,获得10
7秒前
罗实发布了新的文献求助10
7秒前
li完成签到,获得积分10
8秒前
热心市民小红花应助白勺采纳,获得10
9秒前
nzxnzx完成签到,获得积分10
9秒前
星辰大海应助MAY1998采纳,获得10
9秒前
搜集达人应助零九二一采纳,获得10
10秒前
RONG发布了新的文献求助10
11秒前
洁净之柔发布了新的文献求助10
11秒前
xiaopig发布了新的文献求助10
12秒前
星辰大海应助MT采纳,获得10
12秒前
852应助yyxx采纳,获得10
13秒前
jiangchuansm完成签到,获得积分10
13秒前
wwhh完成签到 ,获得积分10
13秒前
云宝发布了新的文献求助10
14秒前
Akim应助冷酷太清采纳,获得10
17秒前
任贱贱完成签到,获得积分10
17秒前
蔡宇滔发布了新的文献求助10
17秒前
17秒前
18秒前
iNk应助胡桃采纳,获得20
18秒前
西西完成签到,获得积分10
19秒前
19秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4122509
求助须知:如何正确求助?哪些是违规求助? 3660393
关于积分的说明 11586634
捐赠科研通 3361677
什么是DOI,文献DOI怎么找? 1847116
邀请新用户注册赠送积分活动 911722
科研通“疑难数据库(出版商)”最低求助积分说明 827579