Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans

医学 放射科 下垂 骨盆 卷积神经网络 无症状的 放射性武器 特征(语言学) 人工智能 计算机科学 外科 语言学 历史 哲学 考古
作者
Naofumi Tomita,Yvonne Cheung,Saeed Hassanpour
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:98: 8-15 被引量:231
标识
DOI:10.1016/j.compbiomed.2018.05.011
摘要

Osteoporotic vertebral fractures (OVFs) are prevalent in older adults and are associated with substantial personal suffering and socio-economic burden. Early diagnosis and treatment of OVFs are critical to prevent further fractures and morbidity. However, OVFs are often under-diagnosed and under-reported in computed tomography (CT) exams as they can be asymptomatic at an early stage. In this paper, we present and evaluate an automatic system that can detect incidental OVFs in chest, abdomen, and pelvis CT examinations at the level of practicing radiologists. Our OVF detection system leverages a deep convolutional neural network (CNN) to extract radiological features from each slice in a CT scan. These extracted features are processed through a feature aggregation module to make the final diagnosis for the full CT scan. In this work, we explored different methods for this feature aggregation, including the use of a long short-term memory (LSTM) network. We trained and evaluated our system on 1432 CT scans, comprised of 10,546 two-dimensional (2D) images in sagittal view. Our system achieved an accuracy of 89.2% and an F1 score of 90.8% based on our evaluation on a held-out test set of 129 CT scans, which were established as reference standards through standard semiquantitative and quantitative methods. The results of our system matched the performance of practicing radiologists on this test set in real-world clinical circumstances. We expect the proposed system will assist and improve OVF diagnosis in clinical settings by pre-screening routine CT examinations and flagging suspicious cases prior to review by radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
躲进小楼完成签到,获得积分20
刚刚
现代乌龟完成签到,获得积分10
1秒前
李怼怼完成签到,获得积分10
1秒前
pangpang完成签到,获得积分10
1秒前
lemon完成签到,获得积分10
1秒前
学术z完成签到,获得积分10
1秒前
helpme完成签到,获得积分10
2秒前
陌路完成签到,获得积分10
3秒前
美好的如蓉完成签到,获得积分10
3秒前
BREEZE完成签到,获得积分10
3秒前
撒西不理完成签到,获得积分10
4秒前
Mike完成签到,获得积分10
4秒前
活力傲蕾发布了新的文献求助10
4秒前
淡淡书双完成签到,获得积分10
4秒前
muzi完成签到,获得积分10
4秒前
小泓完成签到,获得积分10
4秒前
落寞白曼完成签到,获得积分10
4秒前
shine发布了新的文献求助10
4秒前
科研小Li发布了新的文献求助10
5秒前
呼呼呼完成签到,获得积分10
6秒前
独特秋双完成签到,获得积分10
6秒前
虚幻白桃完成签到,获得积分10
6秒前
小丫头子完成签到,获得积分10
7秒前
7秒前
HalfGumps完成签到,获得积分10
7秒前
8秒前
t通应助寒林清远采纳,获得10
9秒前
可爱的函函应助Wacky采纳,获得10
9秒前
英俊的铭应助研友_ZGD9o8采纳,获得10
9秒前
5552222完成签到,获得积分10
10秒前
六月初八夜完成签到,获得积分10
10秒前
10秒前
柠檬要加冰完成签到,获得积分10
10秒前
沐沐完成签到,获得积分10
10秒前
xiaohanzai88完成签到,获得积分10
11秒前
白青完成签到,获得积分10
11秒前
DJ完成签到,获得积分10
11秒前
思源应助干净的世开采纳,获得10
11秒前
活力傲蕾完成签到,获得积分10
12秒前
充电宝应助大鸭梨采纳,获得10
12秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788571
求助须知:如何正确求助?哪些是违规求助? 3333821
关于积分的说明 10264942
捐赠科研通 3049958
什么是DOI,文献DOI怎么找? 1673735
邀请新用户注册赠送积分活动 802206
科研通“疑难数据库(出版商)”最低求助积分说明 760549