Transposon Sequencing Uncovers an Essential Regulatory Function of Phosphoribulokinase for Methylotrophy

甲基营养素 生物 遗传学 甲醇脱氢酶 基因 转座因子 转座子突变 功能基因组学 基因组 计算生物学 基因组学
作者
Andrea M. Ochsner,Matthias Christen,Lucas Hemmerle,Rémi Peyraud,Beat Christen,Julia A. Vorholt
出处
期刊:Current Biology [Elsevier BV]
卷期号:27 (17): 2579-2588.e6 被引量:36
标识
DOI:10.1016/j.cub.2017.07.025
摘要

Methylotrophy is the ability of organisms to grow at the expense of reduced one-carbon compounds, such as methanol or methane. Here, we used transposon sequencing combining hyper-saturated transposon mutagenesis with high-throughput sequencing to define the essential methylotrophy genome of Methylobacterium extorquens PA1, a model methylotroph. To distinguish genomic regions required for growth only on methanol from general required genes, we contrasted growth on methanol with growth on succinate, a non-methylotrophic reference substrate. About 500,000 insertions were mapped for each condition, resulting in a median insertion distance of five base pairs. We identified 147 genes and 76 genes as specific for growth on methanol and succinate, respectively, and a set of 590 genes as required under both growth conditions. For the integration of metabolic functions, we reconstructed a genome-scale metabolic model and performed in silico essentiality analysis. In total, the approach uncovered 95 genes not previously described as crucial for methylotrophy, including genes involved in respiration, carbon metabolism, transport, and regulation. Strikingly, regardless of the absence of the Calvin cycle in the methylotroph, the screen led to the identification of the gene for phosphoribulokinase as essential during growth on methanol, but not during growth on succinate. Genetic experiments in addition to metabolomics and proteomics revealed that phosphoribulokinase serves a key regulatory function. Our data support a model according to which ribulose-1,5-bisphosphate is an essential metabolite that induces a transcriptional regulator driving one-carbon assimilation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助嘚嘚采纳,获得10
2秒前
fly完成签到,获得积分10
3秒前
4秒前
顺心曼香发布了新的文献求助10
5秒前
小唐发布了新的文献求助10
6秒前
6秒前
香菜皮蛋发布了新的文献求助10
6秒前
淡然巨人关注了科研通微信公众号
6秒前
lindsay完成签到,获得积分10
8秒前
乌鱼园发布了新的文献求助10
9秒前
11秒前
Hermit发布了新的文献求助10
12秒前
15完成签到,获得积分10
12秒前
15秒前
蓝冰完成签到,获得积分10
19秒前
智勇双全完成签到,获得积分10
19秒前
知了发布了新的文献求助10
20秒前
21秒前
明朗完成签到,获得积分10
21秒前
21秒前
Xiaopan完成签到 ,获得积分10
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
Rye227应助科研通管家采纳,获得10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
冰魂应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
23秒前
涵陌瑌发布了新的文献求助10
25秒前
Blessing发布了新的文献求助10
27秒前
yasen完成签到,获得积分10
28秒前
乌鱼园完成签到,获得积分10
28秒前
29秒前
上官老黑完成签到 ,获得积分10
30秒前
31秒前
忐忑的黑猫应助luchong采纳,获得10
31秒前
EvilS完成签到,获得积分10
32秒前
Judith完成签到 ,获得积分10
34秒前
所所应助大成子采纳,获得10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781669
求助须知:如何正确求助?哪些是违规求助? 3327234
关于积分的说明 10230111
捐赠科研通 3042093
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799335
科研通“疑难数据库(出版商)”最低求助积分说明 758774