Metabolic reprogramming and Warburg effect in keloids

高光谱成像 像素 医学 模式识别(心理学) 相似性(几何) 人工智能 数据立方体 图像(数学) 立方体(代数) 核医学 计算机科学 数学 组合数学 数据挖掘
作者
Hui Sun
出处
期刊:Burns [Elsevier BV]
卷期号:48 (5): 1266-1267 被引量:2
标识
DOI:10.1016/j.burns.2022.04.021
摘要

Background and objective Early diagnosis of chronic myeloid leukemia (CML) is important for effective treatment. The high spectral and spatial resolution of hyperspectral cellular or tissue images coupled with image analysis algorithms may provide avenues to detect and diagnose diseases early. Many algorithms have been used to analyze medical hyperspectral image data, each having their own strengths and short-comings. We present a novel 3-Dimensional Spectral Gradient Mapping (3-D SGM) method to analyze hyperspectral image cubes of CML versus healthy blood smears.Methods In the present study, we analyzed 13 hyperspectral image cubes of CML and healthy neutrophils. The 3-D SGM algorithm was compared to the conventional Windowed Spectral Angle Mapping (Windowed SAM) method. The 3-D SGM exploited the spectral information of the image cube together with the inter-band and inter-pixel data by extracting the 3-D gradient vector from each pixel. The Windowed SAM determined the similarity between the averaged window of a 2×2 training pixel group and the test pixel, in the multidimensional spectral angle.Results The specificity measure of 3-D SGM (97.7%) was superior to Windowed SAM (72.7%) at ruling out the presence of the disease, making it potentially ideal for screening patients. The positive likelihood ratio value of 3-D SGM (16.70) was superior in diagnosing the presence of the disease (i.e., positive test for CML) versus Windowed SAM (2.26). An accuracy value of 84.2% was achieved with 3-D SGM versus only 70.2% for Windowed SAM.Conclusion The new method is efficient and robust for analyzing hyperspectral images of CML versus healthy neutrophils. It has the potential to be developed into an inexpensive, minimally invasive method for screening CML, and could directly facilitate early diagnosis and treatment of the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夜雨完成签到 ,获得积分10
1秒前
vv1223发布了新的文献求助10
1秒前
帆帆完成签到 ,获得积分10
1秒前
yhtu完成签到,获得积分10
2秒前
2秒前
liusong发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
完美世界应助顺心的故事采纳,获得10
5秒前
Owen应助seusyy采纳,获得10
6秒前
6秒前
lzw123456发布了新的文献求助10
6秒前
舒萼完成签到,获得积分10
6秒前
6秒前
咸鱼刺身完成签到,获得积分10
7秒前
liusong完成签到,获得积分10
7秒前
一梦三四年完成签到 ,获得积分10
8秒前
Joycg完成签到,获得积分10
8秒前
CCCCC完成签到,获得积分10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
hx应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
vlots应助科研通管家采纳,获得30
9秒前
yanzu应助科研通管家采纳,获得10
9秒前
残幻应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
七七发布了新的文献求助10
9秒前
Hello应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
rabpig应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3875947
求助须知:如何正确求助?哪些是违规求助? 3418586
关于积分的说明 10709619
捐赠科研通 3143217
什么是DOI,文献DOI怎么找? 1734263
邀请新用户注册赠送积分活动 836643
科研通“疑难数据库(出版商)”最低求助积分说明 782719