Prediction of Hidden Coronary Artery Disease Using Machine Learning in Patients With Acute Ischemic Stroke.

医学 冠状动脉疾病 内科学 狼牙棒 心脏病学 心肌梗塞 接收机工作特性 冲程(发动机) 危险系数 血运重建 计算机辅助设计 狭窄 急性冠脉综合征 比例危险模型 逻辑回归 不稳定型心绞痛
作者
JoonNyung Heo,Joonsang Yoo,Hyungwoo Lee,Il Hyung Lee,Jung Sun Kim,Eunjeong Park,Young Dae Kim,Hyo Suk Nam
出处
期刊:Neurology [Lippincott Williams & Wilkins]
卷期号:99 (1): e55-e65 被引量:1
标识
DOI:10.1212/wnl.0000000000200576
摘要

A machine learning technique for identifying hidden coronary artery disease (CAD) might be useful. We developed and validated machine learning models to predict patients with hidden CAD and to assess long-term outcomes in patients with acute ischemic stroke.Multidetector coronary CT was performed for patients without a known history of CAD. Primary outcomes were defined as having any degree of CAD and having obstructive CAD (≥50% stenosis). Demographic variables, risk factors, laboratory results, Trial of ORG 10172 in Acute Stroke Treatment classification, NIH Stroke Scale score, blood pressure, and carotid artery stenosis were used to develop and validate machine learning models to predict CAD. Area under the receiver operating characteristic curves (AUC) was calculated for performance analysis, and Kaplan-Meier and Cox survival analyses of long-term outcomes were performed. Major adverse cardiovascular events (MACEs) were defined as ischemic stroke, myocardial infarction, unstable angina, urgent coronary revascularization, and cardiovascular mortality.Overall, 1,710 patients were included for the training dataset and 348 patients for the validation dataset. An extreme gradient boosting model was developed to predict any degree of CAD, which showed an AUC of 0.763 (95% CI 0.711-0.814) on validation. A logistic regression model was used to predict obstructive CAD and had an AUC of 0.714 (95% CI 0.692-0.799). During the first 5 years of follow-up, MACEs occurred more frequently with predictions of any CAD (p = 0.022) or obstructive CAD (p < 0.001). Cox proportional analysis showed that the hazard ratio of MACE was 1.5 (95% CI 1.1-2.2; p = 0.016) with prediction of any CAD, whereas it was 1.9 (95% CI 1.3-2.6; p < 0.001) for obstructive CAD.We demonstrated that machine learning may help identify hidden CAD in patients with acute ischemic stroke. Long-term outcomes were also associated with prediction results.This study provides Class II evidence that in patients with acute ischemic stroke with CAD risk factors but no known history of CAD, a machine learning model predicts CAD on multidetector coronary CT with an AUC of 0.763 (95% CI 0.711-0.814).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重发布了新的文献求助10
刚刚
斯文败类应助sunchaoyue采纳,获得10
1秒前
卡卡西应助默默山槐采纳,获得10
1秒前
风会代我伴你完成签到,获得积分10
1秒前
1秒前
2秒前
iRan发布了新的文献求助10
2秒前
科研通AI5应助高兴的香薇采纳,获得10
3秒前
3秒前
zhl完成签到,获得积分10
3秒前
于文静发布了新的文献求助10
3秒前
科研通AI5应助yanayan采纳,获得100
4秒前
栩栩发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
孔大漂亮发布了新的文献求助20
7秒前
随安发布了新的文献求助30
8秒前
廾匸发布了新的文献求助10
8秒前
meo关闭了meo文献求助
9秒前
QXS发布了新的文献求助10
9秒前
9秒前
mymEN完成签到 ,获得积分10
9秒前
Jing发布了新的文献求助10
9秒前
昏睡的铅笔完成签到,获得积分10
10秒前
SYLH应助陈chq采纳,获得10
11秒前
末排差生完成签到,获得积分0
12秒前
12秒前
白白白发布了新的文献求助10
12秒前
waerteyang发布了新的文献求助10
12秒前
dhts完成签到,获得积分10
12秒前
李爱国应助Wang采纳,获得10
12秒前
12秒前
13秒前
所所应助刘凯鑫采纳,获得10
13秒前
QXS完成签到,获得积分10
14秒前
15秒前
zz发布了新的文献求助10
17秒前
sunchaoyue发布了新的文献求助10
17秒前
冷静的静蕾完成签到,获得积分10
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807134
求助须知:如何正确求助?哪些是违规求助? 3351915
关于积分的说明 10356503
捐赠科研通 3067918
什么是DOI,文献DOI怎么找? 1684783
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765787