霍普夫分叉
数学
理论(学习稳定性)
稳态(化学)
特征向量
分叉
数学分析
歧管(流体力学)
扩散
捕食
纯数学
应用数学
物理
非线性系统
热力学
计算机科学
生物
生态学
工程类
机器学习
物理化学
化学
机械工程
量子力学
作者
Li Shu,Zhenzhen Li,Binxiang Dai
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2022-01-01
卷期号:27 (11): 6885-6885
被引量:18
标识
DOI:10.3934/dcdsb.2022025
摘要
<p style='text-indent:20px;'>In this paper, we consider a predator-prey model with memory-based diffusion. We first analyze the stability of all steady states in detail. Then by analyzing the distribution of eigenvalues, we find that the average memory period can cause the stability change of the positive steady state, and Hopf bifurcation occurs at the positive steady state. Moreover, from the central manifold theorem and the normal form theory, we give the direction and stability of Hopf bifurcation. The results show that, under certain conditions, a family of spatially inhomogeneous periodic solutions will bifurcate from the positive steady state when the average memory period appear.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI