Structural Bioinformatics and Deep Learning of Metalloproteins: Recent Advances and Applications

金属蛋白 结构生物信息学 计算生物学 化学 纳米技术 计算机科学 生物 蛋白质结构 生物化学 材料科学
作者
Claudia Andreini,Antonio Rosato
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:23 (14): 7684-7684 被引量:20
标识
DOI:10.3390/ijms23147684
摘要

All living organisms require metal ions for their energy production and metabolic and biosynthetic processes. Within cells, the metal ions involved in the formation of adducts interact with metabolites and macromolecules (proteins and nucleic acids). The proteins that require binding to one or more metal ions in order to be able to carry out their physiological function are called metalloproteins. About one third of all protein structures in the Protein Data Bank involve metalloproteins. Over the past few years there has been tremendous progress in the number of computational tools and techniques making use of 3D structural information to support the investigation of metalloproteins. This trend has been boosted by the successful applications of neural networks and machine/deep learning approaches in molecular and structural biology at large. In this review, we discuss recent advances in the development and availability of resources dealing with metalloproteins from a structure-based perspective. We start by addressing tools for the prediction of metal-binding sites (MBSs) using structural information on apo-proteins. Then, we provide an overview of the methods for and lessons learned from the structural comparison of MBSs in a fold-independent manner. We then move to describing databases of metalloprotein/MBS structures. Finally, we summarizing recent ML/DL applications enhancing the functional interpretation of metalloprotein structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NEO完成签到 ,获得积分10
刚刚
水何澹澹完成签到,获得积分0
1秒前
sssshhh发布了新的文献求助10
1秒前
背对南通发布了新的文献求助10
1秒前
2秒前
糖小湫发布了新的文献求助10
2秒前
Hustic发布了新的文献求助10
2秒前
天天快乐应助可爱半凡采纳,获得10
2秒前
linguo发布了新的文献求助10
2秒前
3秒前
3秒前
充电宝应助愤怒的豌豆采纳,获得10
3秒前
3秒前
脑洞疼应助CT采纳,获得10
3秒前
3秒前
manba关注了科研通微信公众号
3秒前
李健应助曾经耳机采纳,获得10
4秒前
4秒前
caitSith发布了新的文献求助20
4秒前
Owen应助陨落的繁星采纳,获得150
4秒前
5秒前
华仔应助自觉迎夏采纳,获得10
5秒前
5秒前
小心甜死完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
hu完成签到 ,获得积分10
6秒前
在水一方应助xiaoxiao汉堡采纳,获得10
7秒前
7秒前
7秒前
鱼的宇宙发布了新的文献求助10
7秒前
7秒前
聪慧皓轩发布了新的文献求助10
7秒前
7秒前
QW111发布了新的文献求助10
8秒前
8秒前
9秒前
香蕉觅云应助芋芋采纳,获得10
9秒前
修骨匠人完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546479
求助须知:如何正确求助?哪些是违规求助? 4632273
关于积分的说明 14626188
捐赠科研通 4573977
什么是DOI,文献DOI怎么找? 2507901
邀请新用户注册赠送积分活动 1484538
关于科研通互助平台的介绍 1455722