Effect of Anion on the Quantum Capacitance of Graphene Cathode in Lithium Ion Capacitor: A DFT Study

石墨烯 电解质 阴极 材料科学 锂(药物) 离子 电容 化学物理 超级电容器 电化学 费米能量 纳米技术 电极 化学 电子 物理 物理化学 有机化学 量子力学 医学 内分泌学
作者
Fangyuan Su,Cheng‐Meng Chen
出处
期刊:Meeting abstracts 卷期号:MA2019-04 (4): 187-187
标识
DOI:10.1149/ma2019-04/4/187
摘要

Lithium ion capacitor (LIC) is a kind of electrochemical energy storage device that can combine the power property of a supercapacitor and the energy property of a lithium ion battery simultaneously [1]. Graphene is widely employed as cathode because it can provide excellent capacitance, as well as constructing an effective conducting network [2, 3]. However, the detail understandings of electrode/electrolyte interface in graphene-based LIC is still limited. Based on our previous results, graphene with single vacant defect or pyridinic and pyrrolic doped N atom show much higher quantum capacitance (QC) than the pristine one [4]. This difference can be attributed to the presence of reactive σ state near the Fermi level, which is from the C or N atoms around the defect region. However, when it comes to the real LIC system, reactions may occur between the electrolyte and those reactive atoms in graphene cathode. Therefore, the presence of electrolyte will disturb the density of states (DOS) of graphene-based cathode, and hence the QC and the energy storage ability will vary accordingly. In this work, the interaction between the anion in the electrolyte and graphene cathode with high QC is investigated using First Principle calculation. The results suggest that the defect states of graphene cathode can enhance the adsorption energy towards anion, and hence the QC and electrical double layer (EDL) structure is different with that of pristine graphene cathode. Furthermore, this interaction also decrease the stability of the anion in electrolyte. The results from this work would help to further develop high energy graphene-based LIC and shed some light on its capacity fading mechanisms. Reference: [1] Cericola, et al., Electrochim. Acta, 72(2012), 1. [2] Chen, et al., Energ Environ Sci, 6(2013), 1623. [3] Yu, et al., Nano Energy, 15(2015), 43. [4] Su, et al., Catalysts 8(2018,) 444

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助XYZ采纳,获得10
1秒前
Mingda完成签到,获得积分10
1秒前
hahaha发布了新的文献求助10
1秒前
斯文败类应助wuwuw采纳,获得30
1秒前
贪玩凡阳发布了新的文献求助10
3秒前
bitahu发布了新的文献求助10
3秒前
sym发布了新的文献求助10
3秒前
甜甜玫瑰应助glj采纳,获得10
4秒前
夜休2024发布了新的文献求助10
4秒前
Haicheng完成签到,获得积分10
4秒前
5秒前
脑洞疼应助WxChen采纳,获得10
6秒前
6秒前
Nakyseo完成签到,获得积分10
7秒前
7秒前
暴躁的忆丹完成签到,获得积分10
7秒前
Johnny完成签到,获得积分10
7秒前
科研助手6应助zjy采纳,获得10
7秒前
潇洒的涵双完成签到,获得积分10
9秒前
XM完成签到,获得积分10
10秒前
halo完成签到,获得积分10
10秒前
英俊的汉堡完成签到,获得积分10
10秒前
10秒前
微笑发布了新的文献求助10
11秒前
灵巧一笑完成签到,获得积分10
11秒前
大模型应助受伤妙菱采纳,获得10
11秒前
12秒前
纷纭完成签到,获得积分10
12秒前
赘婿应助迷人的富采纳,获得10
12秒前
酷波er应助weiwenzuo采纳,获得10
12秒前
12秒前
快乐小子发布了新的文献求助10
12秒前
Nanami24完成签到,获得积分10
12秒前
13秒前
13秒前
田様应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
Kasierz应助科研通管家采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793765
求助须知:如何正确求助?哪些是违规求助? 3338643
关于积分的说明 10290816
捐赠科研通 3055026
什么是DOI,文献DOI怎么找? 1676315
邀请新用户注册赠送积分活动 804358
科研通“疑难数据库(出版商)”最低求助积分说明 761836