甲基汞
水生生态系统
溶解有机碳
生物累积
环境化学
Mercury(编程语言)
湿地
生态系统
环境科学
有机质
化学
食物链
生态学
生物
计算机科学
有机化学
程序设计语言
作者
Zhengyu Wu,Zhike Li,Bo Shao,Yiyan Zhang,Wei He,Yiren Lu,Kair Gusvitskii,Yingxin Zhao,Yu‐Rong Liu,Xuejun Wang,Yindong Tong
出处
期刊:Chemosphere
[Elsevier BV]
日期:2022-01-21
卷期号:294: 133713-133713
被引量:14
标识
DOI:10.1016/j.chemosphere.2022.133713
摘要
Mercury (Hg) input into ecosystems is estimated to have increased by twofold to fivefold since the industrial revolution. In aquatic ecosystems, methylmercury (MeHg) receives the most attentions of all the Hg species due to its neurotoxicity and strong bioaccumulation capacity in food chain. Dissolved organic matter (DOM) is crucial in impacting aquatic Hg transformation. However, only few spatially constrained studies have attempted to quantify the relative importance of DOM and other factors (e.g., Hg availability, temperature, pH, and land-use type) on MeHg concentration. In this study, we collected data of 585 water samples at 373 sites globally, including lakes, rivers, estuaries, and wetlands, and characterized the global pattern of MeHg distribution and environmental drivers of aquatic MeHg concentration. Our results showed that MeHg concentrations ranged from detection limits to 11 (geometric mean 0.11 and average 0.29) ng/L, and the highest MeHg concentration and Hg methylation potential were observed in wetlands. A positive relationship was observed between MeHg fraction in the total mercury (THg) and DOM for all the aquatic ecosystems. Using the structural equation modeling, we found that Hg availability was a dominant factor in impacting water MeHg concentration followed by DOM. According to 129 samples of specific DOM source information, we found that the percentage of THg as MeHg (%MeHg) in water dominated by the autochthonous DOM was higher than that dominated by the allochthonous DOM. Our results could advance understanding of aquatic Hg cycling and their environmental drivers, which are fundamental for predicting and mitigating MeHg productions and its potential health risks for humans.
科研通智能强力驱动
Strongly Powered by AbleSci AI