线性矩阵不等式
外稃(植物学)
理论(学习稳定性)
控制理论(社会学)
数学
稳定性判据
詹森不等式
离散时间和连续时间
基质(化学分析)
人工神经网络
凸组合
功能(生物学)
稳定性条件
李雅普诺夫函数
还原(数学)
计算机科学
数学优化
正多边形
凸优化
非线性系统
凸分析
统计
人工智能
量子力学
物理
机器学习
进化生物学
复合材料
禾本科
材料科学
几何学
控制(管理)
生态学
生物
作者
Chuan‐Ke Zhang,Yong He,Lin Jiang,Qing‐Guo Wang,Min Wu
标识
DOI:10.1109/tcyb.2017.2665683
摘要
This paper is concerned with the stability analysis of discrete-time neural networks with a time-varying delay. Assessment of the effect of time delays on system stability requires suitable delay-dependent stability criteria. This paper aims to develop new stability criteria for reduction of conservatism without much increase of computational burden. An extended reciprocally convex matrix inequality is developed to replace the popular reciprocally convex combination lemma (RCCL). It has potential to reduce the conservatism of the RCCL-based criteria without introducing any extra decision variable due to its advantage of reduced estimation gap using the same decision variables. Moreover, a delay-product-type term is introduced for the first time into the Lyapunov function candidate such that a delay-variation-dependent stability criterion with the bounds of delay change rate is established. Finally, the advantages of the proposed criteria are demonstrated through two numerical examples.
科研通智能强力驱动
Strongly Powered by AbleSci AI