Invariant Information Distillation for Unsupervised Image Segmentation and Clustering

聚类分析 计算机科学 人工智能 模式识别(心理学) 分割 无监督学习 人工神经网络 上下文图像分类 机器学习 图像(数学)
作者
Xu Ji,João F. Henriques,Andrea Vedaldi
出处
期刊:Cornell University - arXiv 被引量:31
摘要

We present a novel clustering objective that learns a neural network classifier from scratch, given only unlabelled data samples. The model discovers clusters that accurately match semantic classes, achieving state-of-the-art results in eight unsupervised clustering benchmarks spanning image classification and segmentation. These include STL10, an unsupervised variant of ImageNet, and CIFAR10, where we significantly beat the accuracy of our closest competitors by 6.6 and 9.5 absolute percentage points respectively. The method is not specialised to computer vision and operates on any paired dataset samples; in our experiments we use random transforms to obtain a pair from each image. The trained network directly outputs semantic labels, rather than high dimensional representations that need external processing to be usable for semantic clustering. The objective is simply to maximise mutual information between the class assignments of each pair. It is easy to implement and rigorously grounded in information theory, meaning we effortlessly avoid degenerate solutions that other clustering methods are susceptible to. In addition to the fully unsupervised mode, we also test two semi-supervised settings. The first achieves 88.8% accuracy on STL10 classification, setting a new global state-of-the-art over all existing methods (whether supervised, semi-supervised or unsupervised). The second shows robustness to 90% reductions in label coverage, of relevance to applications that wish to make use of small amounts of labels. this http URL
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助祈雨的鲸鱼采纳,获得30
1秒前
3秒前
5秒前
大大怪完成签到 ,获得积分20
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
雪山飞鹰完成签到,获得积分10
10秒前
雪山飞鹰发布了新的文献求助10
13秒前
14秒前
Owen应助闪闪的人生采纳,获得10
17秒前
feihua1发布了新的文献求助10
21秒前
NexusExplorer应助雪山飞鹰采纳,获得10
22秒前
25秒前
聪明钢铁侠应助宋SONG采纳,获得10
27秒前
29秒前
端庄毛巾发布了新的文献求助10
32秒前
打打应助niull采纳,获得10
32秒前
量子星尘发布了新的文献求助10
34秒前
34秒前
adobe发布了新的文献求助10
40秒前
114514完成签到,获得积分10
41秒前
早安完成签到,获得积分10
41秒前
大个应助坚强的严青采纳,获得10
41秒前
42秒前
星辰大海应助发嗲的含芙采纳,获得10
42秒前
陈砍砍完成签到 ,获得积分10
42秒前
43秒前
academician完成签到,获得积分10
46秒前
kanglan发布了新的文献求助10
47秒前
华仔应助雪上一枝蒿采纳,获得10
47秒前
48秒前
49秒前
昏睡的炎彬完成签到,获得积分10
50秒前
科研通AI2S应助Amanda采纳,获得10
51秒前
52秒前
深情安青应助kanglan采纳,获得10
54秒前
54秒前
温婉的笑晴完成签到,获得积分20
55秒前
wanci应助冲浪男孩226采纳,获得10
56秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
The User Experience Team of One (2nd Edition) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3880960
求助须知:如何正确求助?哪些是违规求助? 3423280
关于积分的说明 10733859
捐赠科研通 3148248
什么是DOI,文献DOI怎么找? 1736976
邀请新用户注册赠送积分活动 838588
科研通“疑难数据库(出版商)”最低求助积分说明 784014