Structural damage identification based on autoencoder neural networks and deep learning

自编码 深度学习 人工神经网络 降维 人工智能 维数之咒 组分(热力学) 还原(数学) 主成分分析 计算机科学 帧(网络) 机器学习 振动 特征向量 支持向量机 模式识别(心理学) 数学 热力学 电信 物理 量子力学 几何学
作者
Chathurdara Sri Nadith Pathirage,Jun Li,Ling Li,Hong Hao,Wanquan Liu,Pinghe Ni
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:172: 13-28 被引量:325
标识
DOI:10.1016/j.engstruct.2018.05.109
摘要

Abstract Artificial neural networks are computational approaches based on machine learning to learn and make predictions based on data, and have been applied successfully in diverse applications including structural health monitoring in civil engineering. It is difficult to optimize the weights in the neural networks that have multiple hidden layers due to the vanishing gradient issue. This paper proposes an autoencoder based framework for structural damage identification, which can support deep neural networks and be utilized to obtain optimal solutions for pattern recognition problems of highly non-linear nature, such as learning a mapping between the vibration characteristics and structural damage. Two main components are defined in the proposed framework, namely, dimensionality reduction and relationship learning. The first component is to reduce the dimensionality of the original input vector while preserving the required necessary information, and the second component is to perform the relationship learning between the features with the reduced dimensionality and the stiffness reduction parameters of the structure. Vibration characteristics, such as natural frequencies and mode shapes, are used as the input and the structural damage are considered as the output vector. A pre-training scheme is performed to train the hidden layers in the autoencoders layer by layer, and fine tuning is conducted to optimize the whole network. Numerical and experimental investigations on steel frame structures are conducted to demonstrate the accuracy and efficiency of the proposed framework, comparing with the traditional ANN methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助Marlo采纳,获得10
1秒前
小马甲应助mojomars采纳,获得10
2秒前
kst19901026发布了新的文献求助10
3秒前
3秒前
Lucas应助子慕i采纳,获得10
4秒前
forever发布了新的文献求助10
6秒前
Marlo应助文件撤销了驳回
6秒前
汉堡包应助carlos采纳,获得10
8秒前
直率熠彤完成签到,获得积分10
9秒前
迟百彤完成签到 ,获得积分10
9秒前
pluto应助勤奋向秋采纳,获得10
12秒前
12秒前
机灵的衬衫完成签到 ,获得积分10
15秒前
王豆豆完成签到,获得积分10
16秒前
完美世界应助lxy采纳,获得10
16秒前
17秒前
天天快乐应助Dnil采纳,获得10
18秒前
19秒前
过滤膜完成签到,获得积分10
20秒前
852应助桑葚草莓冰淇淋采纳,获得10
21秒前
21秒前
21秒前
华仔应助ASDS采纳,获得10
24秒前
KYJR完成签到,获得积分10
24秒前
柏小霜完成签到 ,获得积分10
24秒前
Licyan发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
26秒前
13623297271发布了新的文献求助10
26秒前
27秒前
28秒前
carlos发布了新的文献求助10
29秒前
华仔应助kst19901026采纳,获得10
29秒前
30秒前
111111发布了新的文献求助10
31秒前
32秒前
优雅莞发布了新的文献求助10
32秒前
32秒前
Licyan完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870575
求助须知:如何正确求助?哪些是违规求助? 3412761
关于积分的说明 10680956
捐赠科研通 3137207
什么是DOI,文献DOI怎么找? 1730678
邀请新用户注册赠送积分活动 834283
科研通“疑难数据库(出版商)”最低求助积分说明 781092