Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine

电池(电) 支持向量机 健康状况 电池组 电动汽车 计算机科学 荷电状态 工程类 人工智能 汽车工程 功率(物理) 量子力学 物理
作者
Xuning Feng,Caihao Weng,Xiangming He,Xuebing Han,Languang Lu,Dongsheng Ren,Minggao Ouyang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (9): 8583-8592 被引量:365
标识
DOI:10.1109/tvt.2019.2927120
摘要

The online estimation of battery state-of-health (SOH) is an ever significant issue for the intelligent energy management of the autonomous electric vehicles. Machine-learning based approaches are promising for the online SOH estimation. This paper proposes a machine-learning based algorithm for the online SOH estimation of Li-ion battery. A predictive diagnosis model used in the algorithm is established based on support vector machine (SVM). The support vectors, which reflects the intrinsic characteristics of the Li-ion battery, are determined from the charging data of fresh cells. Furthermore, the coefficients of the SVMs for cells at different SOH are identified once the support vectors are determined. The algorithm functions by comparing partial charging curves with the stored SVMs. Similarity factor is defined after comparison to quantify the SOH of the data under evaluation. The operation of the algorithm only requires partial charging curves, e.g., 15 min charging curves, making fast on-board diagnosis of battery SOH into reality. The partial charging curves can be intercepted from a wide range of voltage section, thereby relieving the pain that there is little chance that the driver charges the battery pack from a predefined state-of-charge. Train, validation, and test are conducted for two commercial Li-ion batteries with Li(NiCoMn)1/3O2 cathode and graphite anode, indicating that the algorithm can estimate the battery SOH with less than 2% error for 80% of all the cases, and less than 3% error for 95% of all the cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fengzi151完成签到,获得积分10
1秒前
1秒前
知己完成签到,获得积分10
1秒前
1秒前
郑泽森完成签到,获得积分10
2秒前
JIyong发布了新的文献求助200
2秒前
3秒前
qpzn完成签到,获得积分10
3秒前
3秒前
老白完成签到,获得积分10
4秒前
欣喜迎天完成签到,获得积分10
4秒前
学习中完成签到,获得积分10
5秒前
小贝发布了新的文献求助10
5秒前
志灰灰完成签到,获得积分10
5秒前
我是谁发布了新的文献求助10
5秒前
爱炸鸡也爱烧烤完成签到 ,获得积分10
5秒前
dwei1976发布了新的文献求助10
7秒前
ooo娜完成签到 ,获得积分10
7秒前
结实冰菱完成签到,获得积分10
7秒前
井九完成签到 ,获得积分10
7秒前
你都吃了那么多完成签到 ,获得积分10
8秒前
Juid发布了新的文献求助10
8秒前
8秒前
Lucas应助wcy采纳,获得10
8秒前
共享精神应助123采纳,获得10
8秒前
野性的十三完成签到,获得积分10
8秒前
fanjinzhu完成签到,获得积分10
9秒前
chonger完成签到,获得积分10
9秒前
10秒前
云尘忆梦发布了新的文献求助10
10秒前
MZT发布了新的文献求助10
11秒前
11秒前
小贝完成签到,获得积分20
11秒前
kexing完成签到,获得积分10
11秒前
酷波er应助LiusuWang采纳,获得10
11秒前
活力立诚完成签到,获得积分10
12秒前
12秒前
12秒前
平常无颜发布了新的文献求助10
13秒前
cola完成签到,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790196
求助须知:如何正确求助?哪些是违规求助? 3334887
关于积分的说明 10272750
捐赠科研通 3051350
什么是DOI,文献DOI怎么找? 1674626
邀请新用户注册赠送积分活动 802730
科研通“疑难数据库(出版商)”最低求助积分说明 760846