化学
氧化磷酸化
机制(生物学)
催化作用
立体化学
细胞色素P450
生物化学
酶
认识论
哲学
作者
Xiya Wang,Junyou Shi,Yongjun Liu
出处
期刊:Inorganic Chemistry
[American Chemical Society]
日期:2018-07-12
卷期号:57 (15): 8933-8941
被引量:15
标识
DOI:10.1021/acs.inorgchem.8b00860
摘要
The CYP161C2 (PntM) from Streptomyces arenae is a member of the cytochrome P450 enzymes, which catalyzes the unusual oxidative rearrangement of pentalenolactone F (1) to the sesquiterpenoid antibiotic pentalenolactone (3). On the basis of the crystal structure of PntM bound with substrate, quantum mechanical/molecular mechanics (QM/MM) calculations have been performed to explore the detailed mechanism of PntM-catalyzed oxidative rearrangement. The conversion from pentalenolactone F (1) to pentalenolactone (3) involves the stereospecific removal of the H-1 si from 1, the syn-1,2-migration of the 2 si methyl group, and the antarafacial loss of H-3 re. The abstraction of H-1 si by Cpd I is calculated to be rate limiting with an energy barrier of 20.3 kcal/mol, which basically agrees with the estimated free energy barrier from experiments (18.6 kcal/mol). It is the unfavorable geometry of Fe-OH-C1 that blocks the oxygen rebound reaction, and the subsequent intramolecular syn-1,2-methyl migration is accompanied by an electron transfer from the substrate to the porphyrin ring via an Fe-OH group, generating the carbocation intermediate. Owing to the positive charge, the intermediate can easily lose a proton to form the final products. Our calculation results indicate that both the carboxyl group of porphyrin and Fe-OH can act as bases to accept the proton of the substrate. The target product pentalenolactone and the three isomeric byproducts correspond to four different modes of deprotonation.
科研通智能强力驱动
Strongly Powered by AbleSci AI