An artificial intelligence approach to early predict non-ST-elevation myocardial infarction patients with chest pain

胸痛 医学 接收机工作特性 心肌梗塞 不稳定型心绞痛 急诊科 内科学 心脏病学 急性冠脉综合征 肌钙蛋白 ST高程 临床预测规则 精神科
作者
Chieh-Chen Wu,Wen‐Ding Hsu,Md. Mohaimenul Islam,Tahmina Nasrin Poly,Hsuan‐Chia Yang,Phung‐Anh Nguyen,Yao‐Chin Wang,Yu‐Chuan Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:173: 109-117 被引量:58
标识
DOI:10.1016/j.cmpb.2019.01.013
摘要

Hospital admission rate for the patients with chest pain has already been increased worldwide but no existing risk score has been designed to stratify non-ST-elevation myocardial infarction (NSTEMI) from non-cardiogenic chest pain. Clinical diagnosis of chest pain in the emergency department is always highly subjective and variable. We, therefore, aimed to develop an artificial intelligence approach to predict stable NSTEMI that would give valuable insight to reduce misdiagnosis in the real clinical setting.A standard protocol was developed to collect data from chest pain patients who had visited the emergency department between December 2016 and February 2017. All the chest pain patients with aged <20 years were primarily included in this study. However, STEMI, previous history of ACS, and out-of-hospital cardiac arrest were excluded from our study. An artificial neural network (ANN) model was then developed to predict NSTEMI patients. The accuracy, sensitivity, specificity, and receiver operating characteristic curve was used to measure the performance of this model.A total of 268 chest pain patients were included in this study; of those, 47 (17.5%) was stable NSTEMI, and 221 (82.5%) was unstable angina patients. Serval risk factors such as cardiac risk factor, systolic blood pressure, hemoglobin, corrected QT interval (QTc), PR interval, glutamic-oxaloacetic transaminase, glutamic pyruvic transaminase and troponin were independently associated with stable NSTEMI. The area under the receiver operating characteristic (AUROC) and accuracy of ANN were 98.4, and 92.86. Additionally, the sensitivity, specificity, positive predictive value, and negative predictive value of the ANN model was 90.91, 93.33, 76.92, and 97.67 respectively.Our prediction model showed a higher accuracy to predict NSTEMI patients. This model has a potential application in disease detection, monitoring, and prognosis of chest pain at risk of AMI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
baibaibai完成签到,获得积分10
1秒前
ppppppppp发布了新的文献求助10
2秒前
羞涩的问兰完成签到,获得积分10
3秒前
4秒前
传奇3应助Lindsay采纳,获得10
4秒前
姜露萍发布了新的文献求助10
4秒前
4秒前
汉堡包应助博修采纳,获得10
5秒前
Cheryy完成签到,获得积分10
5秒前
6秒前
lascqy完成签到 ,获得积分10
6秒前
6秒前
共产主义战士完成签到,获得积分10
7秒前
8秒前
科目三应助学术蜗牛采纳,获得10
8秒前
Owen应助woodword采纳,获得10
8秒前
还在做梦发布了新的文献求助10
9秒前
1793275356发布了新的文献求助10
9秒前
10秒前
ding应助abby123采纳,获得30
11秒前
深情安青应助Tokcy采纳,获得10
11秒前
包飞雪发布了新的文献求助10
11秒前
hhhhhhe发布了新的文献求助10
13秒前
13秒前
bkagyin应助mango524采纳,获得10
14秒前
wewe完成签到,获得积分10
14秒前
梁政研完成签到 ,获得积分20
14秒前
汉堡包应助zz采纳,获得10
15秒前
Akim应助友好醉波采纳,获得10
15秒前
16秒前
17秒前
wushangyu发布了新的文献求助10
18秒前
沐星完成签到,获得积分20
18秒前
asymmetric糖发布了新的文献求助10
18秒前
18秒前
19秒前
西瓜皮完成签到 ,获得积分10
19秒前
goldNAN发布了新的文献求助10
19秒前
包飞雪完成签到,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789298
求助须知:如何正确求助?哪些是违规求助? 3334334
关于积分的说明 10269281
捐赠科研通 3050758
什么是DOI,文献DOI怎么找? 1674155
邀请新用户注册赠送积分活动 802507
科研通“疑难数据库(出版商)”最低求助积分说明 760693