Review of Pavement Defect Detection Methods

人工智能 目标检测 深度学习 人工神经网络 水准点(测量) 计算机科学 分割 图像分割 图像处理 机器学习 过程(计算) 特征提取 模式识别(心理学) 计算机视觉 图像(数学) 操作系统 地理 大地测量学
作者
Wei Cao,Qifan Liu,Zhiquan He
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 14531-14544 被引量:157
标识
DOI:10.1109/access.2020.2966881
摘要

Road pavement cracks detection has been a hot research topic for quite a long time due to the practical importance of crack detection for road maintenance and traffic safety. Many methods have been proposed to solve this problem. This paper reviews the three major types of methods used in road cracks detection: image processing, machine learning and 3D imaging based methods. Image processing algorithms mainly include threshold segmentation, edge detection and region growing methods, which are used to process images and identify crack features. Crack detection based traditional machine learning methods such as neural network and support vector machine still relies on hand-crafted features using image processing techniques. Deep learning methods have fundamentally changed the way of crack detection and greatly improved the detection performance. In this work, we review and compare the deep learning neural networks proposed in crack detection in three ways, classification based, object detection based and segmentation based. We also cover the performance evaluation metrics and the performance of these methods on commonly-used benchmark datasets. With the maturity of 3D technology, crack detection using 3D data is a new line of research and application. We compare the three types of 3D data representations and study the corresponding performance of the deep neural networks for 3D object detection. Traditional and deep learning based crack detection methods using 3D data are also reviewed in detail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lauren完成签到 ,获得积分10
刚刚
1秒前
慕青应助小杨采纳,获得10
1秒前
文静的绯完成签到,获得积分10
1秒前
jiangshanshan发布了新的文献求助10
3秒前
搜集达人应助你hao采纳,获得10
4秒前
袁科研完成签到,获得积分10
4秒前
11秒前
13秒前
爆米花应助123321采纳,获得10
14秒前
你hao完成签到,获得积分10
14秒前
15秒前
16秒前
所所应助我喜欢大学霸采纳,获得10
16秒前
你hao发布了新的文献求助10
17秒前
雨中过客发布了新的文献求助10
19秒前
jiangshanshan完成签到,获得积分20
20秒前
qks完成签到 ,获得积分10
25秒前
在水一方应助科研通管家采纳,获得10
26秒前
26秒前
wanci应助科研通管家采纳,获得10
26秒前
传奇3应助科研通管家采纳,获得10
26秒前
我是老大应助科研通管家采纳,获得10
26秒前
乐乐应助科研通管家采纳,获得10
27秒前
传奇3应助科研通管家采纳,获得10
27秒前
桐桐应助科研通管家采纳,获得10
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
852应助科研通管家采纳,获得10
27秒前
星辰大海应助科研通管家采纳,获得10
27秒前
斯文败类应助科研通管家采纳,获得10
27秒前
英俊的铭应助科研通管家采纳,获得10
27秒前
打打应助科研通管家采纳,获得10
27秒前
思源应助科研通管家采纳,获得10
27秒前
科目三应助科研通管家采纳,获得30
27秒前
传奇3应助科研通管家采纳,获得10
27秒前
27秒前
科目三应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778226
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216390
捐赠科研通 3039102
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798389
科研通“疑难数据库(出版商)”最低求助积分说明 758366