已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning analysis in coronary computed tomographic angiography imaging for the assessment of patients with coronary artery stenosis

医学 计算机断层摄影 狭窄 放射科 计算机断层血管造影 心脏病学 计算机断层摄影术 内科学 血管造影 冠状动脉造影 动脉 心肌梗塞
作者
Dan Han,Jiayi Liu,Zhonghua Sun,Yu Cui,Yi He,Zhenghan Yang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:196: 105651-105651 被引量:75
标识
DOI:10.1016/j.cmpb.2020.105651
摘要

Abstract Background and Objective Recently, deep convolutional neural network has significantly improved image classification and image segmentation. If coronary artery disease (CAD) can be diagnosed through machine learning and deep learning, it will significantly reduce the burdens of the doctors and accelerate the critical patient diagnoses. The purpose of the study is to assess the practicability of utilizing deep learning approaches to process coronary computed tomographic angiography (CCTA) imaging (termed CCTA-artificial intelligence, CCTA-AI) in coronary artery stenosis. Materials and Methods A CCTA reconstruction pipeline was built by utilizing deep learning and transfer learning approaches to generate auto-reconstructed CCTA images based on a series of two-dimensional (2D) CT images. 150 patients who underwent successively CCTA and digital subtraction angiography (DSA) from June 2017 to December 2017 were retrospectively analyzed. The dataset was divided into two parts comprising training dataset and testing dataset. The training dataset included the CCTA images of 100 patients which are trained using convolutional neural networks (CNN) in order to further identify various plaque classifications and coronary stenosis. The other 50 CAD patients acted as testing dataset that is evaluated by comparing the auto-reconstructed CCTA images with traditional CCTA images on the condition that DSA images are regarded as the reference method. Receiver operating characteristic (ROC) analysis was used for statistical analysis to compare CCTA-AI with DSA and traditional CCTA in the aspect of detecting coronary stenosis and plaque features. Results AI significantly reduces time for post-processing and diagnosis comparing to the traditional methods. In identifying various degrees of coronary stenosis, the diagnostic accuracy of CCTA-AI is better than traditional CCTA (AUCAI = 0.870, AUCCCTA = 0.781, P Conclusion The proposed CCTA-AI allows the generation of auto-reconstructed CCTA images from a series of 2D CT images. This approach is relatively accurate for detecting ≥50% stenosis and analyzing plaque features compared to traditional CCTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaixax完成签到,获得积分10
1秒前
winew完成签到 ,获得积分10
2秒前
熄熄发布了新的文献求助20
2秒前
雅典的宠儿完成签到 ,获得积分10
3秒前
乐乱完成签到 ,获得积分10
4秒前
义气幼珊完成签到 ,获得积分10
5秒前
5秒前
Tumumu完成签到,获得积分10
6秒前
柳行天完成签到 ,获得积分10
7秒前
huigangwang完成签到,获得积分10
8秒前
8秒前
文艺的筮完成签到 ,获得积分10
8秒前
小旭不会飞完成签到,获得积分10
9秒前
10秒前
我要读博士完成签到 ,获得积分10
11秒前
ixueyi完成签到,获得积分10
11秒前
12秒前
飞快的三问完成签到,获得积分10
12秒前
13秒前
沐浔完成签到,获得积分20
14秒前
p53完成签到,获得积分10
14秒前
Shyee完成签到 ,获得积分10
15秒前
郑哲楷完成签到,获得积分10
15秒前
16秒前
小张同学完成签到 ,获得积分10
16秒前
Menand完成签到,获得积分10
17秒前
18秒前
电冰箱完成签到 ,获得积分10
18秒前
干净的芮完成签到,获得积分10
18秒前
Ania99完成签到 ,获得积分10
18秒前
虚幻的雪巧完成签到,获得积分10
19秒前
小文子完成签到 ,获得积分10
21秒前
匹诺曹完成签到 ,获得积分10
21秒前
屁屁小彭发布了新的文献求助10
24秒前
兰月满楼完成签到 ,获得积分10
25秒前
沉醉的中国钵完成签到,获得积分10
25秒前
三个气的大门完成签到 ,获得积分10
28秒前
彦子完成签到 ,获得积分10
28秒前
leave完成签到 ,获得积分10
29秒前
AnJaShua完成签到 ,获得积分10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815638
求助须知:如何正确求助?哪些是违规求助? 3359235
关于积分的说明 10400923
捐赠科研通 3076945
什么是DOI,文献DOI怎么找? 1690059
邀请新用户注册赠送积分活动 813633
科研通“疑难数据库(出版商)”最低求助积分说明 767674