Artificial Neural Networks Predict 30-Day Mortality After Hip Fracture: Insights From Machine Learning

医学 人工神经网络 髋部骨折 断裂(地质) 人工智能 机器学习 内科学 岩土工程 地质学 骨质疏松症 计算机科学
作者
Malcolm R. DeBaun,Gustavo Chávez,Andrew T. Fithian,Kingsley Oladeji,Noelle L. Van Rysselberghe,L. Henry Goodnough,Julius A. Bishop,Michael J. Gardner
标识
DOI:10.5435/jaaos-d-20-00429
摘要

Accurately stratifying patients in the preoperative period according to mortality risk informs treatment considerations and guides adjustments to bundled reimbursements. We developed and compared three machine learning models to determine which best predicts 30-day mortality after hip fracture.The 2016 to 2017 National Surgical Quality Improvement Program for hip fracture (AO/OTA 31-A-B-C) procedure-targeted data were analyzed. Three models-artificial neural network, naive Bayes, and logistic regression-were trained and tested using independent variables selected via backward variable selection. The data were split into 80% training and 20% test sets. Predictive accuracy between models was evaluated using area under the curve receiver operating characteristics. Odds ratios were determined using multivariate logistic regression with P < 0.05 for significance.The study cohort included 19,835 patients (69.3% women). The 30-day mortality rate was 5.3%. In total, 47 independent patient variables were identified to train the testing models. Area under the curve receiver operating characteristics for 30-day mortality was highest for artificial neural network (0.92), followed by the logistic regression (0.87) and naive Bayes models (0.83).Machine learning is an emerging approach to develop accurate risk calculators that account for the weighted interactions between variables. In this study, we developed and tested a neural network model that was highly accurate for predicting 30-day mortality after hip fracture. This was superior to the naive Bayes and logistic regression models. The role of machine learning models to predict orthopaedic outcomes merits further development and prospective validation but shows strong promise for positively impacting patient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刻苦寄松发布了新的文献求助10
1秒前
上上谦完成签到,获得积分10
1秒前
choumaoo发布了新的文献求助10
1秒前
2秒前
HCCha完成签到,获得积分10
2秒前
香蕉觅云应助hjs888采纳,获得10
2秒前
满意哈密瓜,数据线完成签到 ,获得积分10
2秒前
3秒前
3秒前
美好晓亦完成签到,获得积分10
4秒前
NexusExplorer应助redamancy采纳,获得10
4秒前
Akim应助qwerty123456采纳,获得10
5秒前
杨芷艳发布了新的文献求助10
5秒前
XXX完成签到 ,获得积分10
5秒前
6秒前
6秒前
xxx完成签到,获得积分20
7秒前
8秒前
8秒前
两句话完成签到 ,获得积分10
8秒前
9秒前
yufanhui应助宋灵竹采纳,获得10
9秒前
9秒前
打打应助tao采纳,获得10
10秒前
喜悦代荷应助zhou采纳,获得10
10秒前
11秒前
11秒前
asuit完成签到,获得积分10
12秒前
范星月应助杆杆采纳,获得10
12秒前
轻松凡英完成签到,获得积分10
12秒前
曾天祥应助漂亮的冰菱采纳,获得10
12秒前
xzy998应助围炉煮茶采纳,获得10
13秒前
hyz发布了新的文献求助10
14秒前
群群发布了新的文献求助10
14秒前
Shellingford发布了新的文献求助10
14秒前
15秒前
HOLLYWOO发布了新的文献求助10
15秒前
Mmc完成签到,获得积分10
17秒前
橘生淮南完成签到,获得积分10
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
Grammar in Action:Building comprehensive grammars of talk-in-interaction 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4164860
求助须知:如何正确求助?哪些是违规求助? 3700245
关于积分的说明 11682917
捐赠科研通 3389501
什么是DOI,文献DOI怎么找? 1858894
邀请新用户注册赠送积分活动 919295
科研通“疑难数据库(出版商)”最低求助积分说明 831988