亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Force-induced charge carrier storage: a new route for stress recording

机械容积 压力(语言学) 材料科学 储能 计算机科学 存水弯(水管) 光电探测器 功率(物理) 光电子学 电气工程 环境科学 物理 工程类 荧光粉 语言学 哲学 量子力学 环境工程
作者
Yixi Zhuang,Dong Tu,Changjian Chen,Le Wang,Hongwu Zhang,Hao Xue,Conghui Yuan,Guorong Chen,Caofeng Pan,Lizong Dai,Rong‐Jun Xie
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:9 (1) 被引量:116
标识
DOI:10.1038/s41377-020-00422-4
摘要

Stress sensing is the basis of human-machine interface, biomedical engineering, and mechanical structure detection systems. Stress sensing based on mechanoluminescence (ML) shows significant advantages of distributed detection and remote response to mechanical stimuli and is thus expected to be a key technology of next-generation tactile sensors and stress recorders. However, the instantaneous photon emission in ML materials generally requires real-time recording with a photodetector, thus limiting their application fields to real-time stress sensing. In this paper, we report a force-induced charge carrier storage (FICS) effect in deep-trap ML materials, which enables storage of the applied mechanical energy in deep traps and then release of the stored energy as photon emission under thermal stimulation. The FICS effect was confirmed in five ML materials with piezoelectric structures, efficient emission centres and deep trap distributions, and its mechanism was investigated through detailed spectroscopic characterizations. Furthermore, we demonstrated three applications of the FICS effect in electronic signature recording, falling point monitoring and vehicle collision recording, which exhibited outstanding advantages of distributed recording, long-term storage, and no need for a continuous power supply. The FICS effect reported in this paper provides not only a breakthrough for ML materials in the field of stress recording but also a new idea for developing mechanical energy storage and conversion systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqq完成签到,获得积分10
4秒前
sissiarno完成签到,获得积分0
21秒前
vitamin完成签到 ,获得积分10
22秒前
27秒前
57秒前
59秒前
1分钟前
1分钟前
js发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
FashionBoy应助js采纳,获得10
2分钟前
2分钟前
lf发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
IU冰冰完成签到 ,获得积分10
3分钟前
3分钟前
lf发布了新的文献求助10
4分钟前
耕牛热完成签到,获得积分10
4分钟前
CES_SH应助周大炮采纳,获得50
4分钟前
Tumumu完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
蔡佰航发布了新的文献求助10
5分钟前
5分钟前
6分钟前
田様应助andrele采纳,获得10
7分钟前
星辰大海应助科研通管家采纳,获得10
7分钟前
赘婿应助果奶绝甜采纳,获得10
7分钟前
李健的小迷弟应助andrele采纳,获得10
7分钟前
bji发布了新的文献求助10
8分钟前
科研通AI6应助大熊采纳,获得10
8分钟前
深情安青应助andrele采纳,获得10
8分钟前
8分钟前
高分求助中
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 9th 400
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Critique du De mundo de Thomas White 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4392798
求助须知:如何正确求助?哪些是违规求助? 3882946
关于积分的说明 12090433
捐赠科研通 3526914
什么是DOI,文献DOI怎么找? 1935480
邀请新用户注册赠送积分活动 976495
科研通“疑难数据库(出版商)”最低求助积分说明 874167