清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Electrospun Li1.3Al0.3Ti1.7(PO4)3 Nanofibers to Develop Solid-State Electrolytes for Lithium Metal Batteries

材料科学 电解质 阳极 离子电导率 分离器(采油) 快离子导体 陶瓷 纳米技术 储能 电化学 电池(电) 化学工程 电极 复合材料 化学 物理化学 工程类 功率(物理) 物理 量子力学 热力学
作者
Andrea La Monaca,Andrea Paolella,Abdelbast Guerfi,Federico Rosei,Karim Zaghib
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (4): 564-564
标识
DOI:10.1149/ma2020-014564mtgabs
摘要

During the last decades lithium-ion battery (LIB) has progressively become the benchmark for developing novel energy storage systems for portable and automotive applications. Although the energy density of commercial LIBs has increased significantly over time, it is now reaching a physicochemical limit (~800 Wh L -1 ), which arises from current materials technology [1]. Hence, a new paradigm is needed to develop next-generation high-energy batteries. A promising candidate is the all-solid-state lithium battery, which features a solid ion-conductive material acting as both separator and electrolyte and usually referred to as solid-state electrolyte (SSE). When compared to flammable organic-based liquid electrolytes, widely used in commercial LIBs, SSEs are characterized by better electrochemical and thermal stabilities as well as by a higher mechanical strength, all of which are beneficial for the safety of the final device. They also enable the use of lithium metal as anode, which potentially increases the volumetric energy density of the cell by up to 70% [1]. SSEs are usually made of polymeric, ceramic or composite materials and, regardless of the composition, they are characterized by some key issues that undermine the performance of the final device. Specifically, the low ionic conductivity at room temperature and the poor interfacial compatibility with the electrodes are the main challenges the scientific community is addressing. Recently, the use of 1-dimensional structures as nanofiller has been reported as an effective strategy to improve ionic conductivity and mechanical properties of composite polymer electrolytes (CPEs) [2–4]. Inorganic nanowires and nanofibers resulted to be also advantageous for increasing the density and therefore the ionic conductivity of ceramic electrolytes [5,6]. Herein, we propose the use of ceramic NASICON-like Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) nanofibers to develop SSEs for lithium batteries. LATP is one of the most promising ceramic material for designing an SSE because it has the highest ionic conductivity in the Li-NASICON family (7 · 10 -4 S cm -1 at 25 °C), it is chemically and thermally stable in atmosphere conditions, and it can be synthesized by using low cost and easily-processable precursors [7]. The synthesis of LATP nanofibers was performed by incorporating an electrospinning step into a conventional sol-gel process [8]. Specifically, a solution containing the precursor materials and a polymer carrier was electrospun to produce a nanofibrous precursor membrane. The achieved membrane was then calcined to synthesize ceramic LATP nanofibers. Purity and morphology of the synthesized material have been investigated by X-ray diffraction and electron microscopy techniques. Finally, LATP nanofibers have been used as ceramic filler to produce a poly(ethylene oxide)-based CPE. Its electrochemical performance are here discussed and compared to those of the equivalent nanoparticle-filled CPE and the plain polymer electrolyte. Preliminary data on a dense ceramic electrolyte achieved by pressing and then calcining the precursor membrane are here reported too. [1] J. Janek, W.G. Zeier, Nat. Energy 1 (2016) 16141 [2] T. Yang, J. Zheng, Q. Cheng, Y.-Y. Hu, C.K. Chan, ACS Appl. Mater. Interfaces 9 (2017) 21773–21780. [3] W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang, A.D. Sendek, Y. Cui, Nat. Energy 2 (2017) 17035. [4] Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi, X. Hao, L. Shen, W. Lv, B. Li, Q.-H. Yang, F. Kang, Y.-B. He, Adv. Funct. Mater. 29 (2019) 1805301. [5] T. Yang, Z.D. Gordon, Y. Li, C.K. Chan, J. Phys. Chem. C 119 (2015) 14947–14953. [6] T. Yang, Y. Li, C.K. Chan, J. Power Sources 287 (2015) 164–169. [7] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka G. Adachi, J. Electrochem. Soc. 137 (1990) 1023–1027. [8] A. La Monaca, A. Paolella, A. Guerfi, F. Rosei, K. Zaghib, Electrochem. Commun. 104 (2019) 106483.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默的溪灵应助丁丁采纳,获得10
13秒前
幽默的溪灵应助丁丁采纳,获得10
13秒前
理理完成签到 ,获得积分10
31秒前
老迟到的土豆完成签到 ,获得积分10
55秒前
萝卜猪完成签到,获得积分10
57秒前
烤鸭完成签到 ,获得积分10
1分钟前
小二郎应助Fairy采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
2分钟前
2分钟前
GU发布了新的文献求助10
2分钟前
爆米花应助GU采纳,获得10
2分钟前
赫若魔应助丁丁采纳,获得10
3分钟前
Marshall发布了新的文献求助10
3分钟前
4分钟前
喻初原完成签到 ,获得积分10
4分钟前
bohn123完成签到 ,获得积分10
5分钟前
mellow完成签到,获得积分10
5分钟前
丁丁完成签到,获得积分10
6分钟前
柯伊达完成签到 ,获得积分10
6分钟前
juan完成签到 ,获得积分10
6分钟前
6分钟前
wuye发布了新的文献求助10
6分钟前
wuye完成签到,获得积分10
7分钟前
8分钟前
糊涂的剑完成签到,获得积分10
8分钟前
8分钟前
cokevvv发布了新的文献求助10
8分钟前
Marshall发布了新的文献求助10
8分钟前
科研通AI5应助cokevvv采纳,获得10
8分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
8分钟前
两个榴莲完成签到,获得积分0
8分钟前
thangxtz完成签到,获得积分10
9分钟前
蒋灵馨完成签到 ,获得积分10
10分钟前
糊涂的剑发布了新的文献求助10
10分钟前
10分钟前
义气的泥猴桃完成签到,获得积分20
11分钟前
NexusExplorer应助糊涂的剑采纳,获得10
11分钟前
Fairy发布了新的文献求助10
11分钟前
腼腆的月亮完成签到,获得积分20
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4753908
求助须知:如何正确求助?哪些是违规求助? 4098028
关于积分的说明 12678875
捐赠科研通 3811454
什么是DOI,文献DOI怎么找? 2104195
邀请新用户注册赠送积分活动 1129362
关于科研通互助平台的介绍 1006852