Electrospun Li1.3Al0.3Ti1.7(PO4)3 Nanofibers to Develop Solid-State Electrolytes for Lithium Metal Batteries

材料科学 电解质 阳极 离子电导率 分离器(采油) 快离子导体 陶瓷 纳米技术 储能 电化学 电池(电) 化学工程 电极 复合材料 化学 物理化学 工程类 功率(物理) 物理 量子力学 热力学
作者
Andrea La Monaca,Andrea Paolella,Abdelbast Guerfi,Federico Rosei,Karim Zaghib
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (4): 564-564
标识
DOI:10.1149/ma2020-014564mtgabs
摘要

During the last decades lithium-ion battery (LIB) has progressively become the benchmark for developing novel energy storage systems for portable and automotive applications. Although the energy density of commercial LIBs has increased significantly over time, it is now reaching a physicochemical limit (~800 Wh L -1 ), which arises from current materials technology [1]. Hence, a new paradigm is needed to develop next-generation high-energy batteries. A promising candidate is the all-solid-state lithium battery, which features a solid ion-conductive material acting as both separator and electrolyte and usually referred to as solid-state electrolyte (SSE). When compared to flammable organic-based liquid electrolytes, widely used in commercial LIBs, SSEs are characterized by better electrochemical and thermal stabilities as well as by a higher mechanical strength, all of which are beneficial for the safety of the final device. They also enable the use of lithium metal as anode, which potentially increases the volumetric energy density of the cell by up to 70% [1]. SSEs are usually made of polymeric, ceramic or composite materials and, regardless of the composition, they are characterized by some key issues that undermine the performance of the final device. Specifically, the low ionic conductivity at room temperature and the poor interfacial compatibility with the electrodes are the main challenges the scientific community is addressing. Recently, the use of 1-dimensional structures as nanofiller has been reported as an effective strategy to improve ionic conductivity and mechanical properties of composite polymer electrolytes (CPEs) [2–4]. Inorganic nanowires and nanofibers resulted to be also advantageous for increasing the density and therefore the ionic conductivity of ceramic electrolytes [5,6]. Herein, we propose the use of ceramic NASICON-like Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) nanofibers to develop SSEs for lithium batteries. LATP is one of the most promising ceramic material for designing an SSE because it has the highest ionic conductivity in the Li-NASICON family (7 · 10 -4 S cm -1 at 25 °C), it is chemically and thermally stable in atmosphere conditions, and it can be synthesized by using low cost and easily-processable precursors [7]. The synthesis of LATP nanofibers was performed by incorporating an electrospinning step into a conventional sol-gel process [8]. Specifically, a solution containing the precursor materials and a polymer carrier was electrospun to produce a nanofibrous precursor membrane. The achieved membrane was then calcined to synthesize ceramic LATP nanofibers. Purity and morphology of the synthesized material have been investigated by X-ray diffraction and electron microscopy techniques. Finally, LATP nanofibers have been used as ceramic filler to produce a poly(ethylene oxide)-based CPE. Its electrochemical performance are here discussed and compared to those of the equivalent nanoparticle-filled CPE and the plain polymer electrolyte. Preliminary data on a dense ceramic electrolyte achieved by pressing and then calcining the precursor membrane are here reported too. [1] J. Janek, W.G. Zeier, Nat. Energy 1 (2016) 16141 [2] T. Yang, J. Zheng, Q. Cheng, Y.-Y. Hu, C.K. Chan, ACS Appl. Mater. Interfaces 9 (2017) 21773–21780. [3] W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang, A.D. Sendek, Y. Cui, Nat. Energy 2 (2017) 17035. [4] Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi, X. Hao, L. Shen, W. Lv, B. Li, Q.-H. Yang, F. Kang, Y.-B. He, Adv. Funct. Mater. 29 (2019) 1805301. [5] T. Yang, Z.D. Gordon, Y. Li, C.K. Chan, J. Phys. Chem. C 119 (2015) 14947–14953. [6] T. Yang, Y. Li, C.K. Chan, J. Power Sources 287 (2015) 164–169. [7] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka G. Adachi, J. Electrochem. Soc. 137 (1990) 1023–1027. [8] A. La Monaca, A. Paolella, A. Guerfi, F. Rosei, K. Zaghib, Electrochem. Commun. 104 (2019) 106483.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
点凌蝶完成签到,获得积分10
刚刚
一晃儿完成签到,获得积分10
1秒前
忽忽发布了新的文献求助10
3秒前
4秒前
小卷粉发布了新的文献求助20
5秒前
养猪人完成签到,获得积分10
5秒前
香蕉觅云应助upsoar采纳,获得10
6秒前
Diana驳回了iNk应助
8秒前
合适的自行车完成签到,获得积分10
9秒前
lilylian完成签到,获得积分10
9秒前
肉酱完成签到 ,获得积分10
9秒前
机灵橘子完成签到,获得积分10
12秒前
14秒前
15秒前
为你博弈完成签到,获得积分10
16秒前
青云完成签到,获得积分10
17秒前
Dromaeotroodon完成签到,获得积分10
18秒前
upsoar发布了新的文献求助10
19秒前
欣喜沛芹完成签到,获得积分10
20秒前
22秒前
yifei完成签到,获得积分10
23秒前
月光族完成签到,获得积分10
23秒前
23秒前
嘎嘎慢点走完成签到 ,获得积分10
24秒前
gao完成签到 ,获得积分10
25秒前
zhouleiwang完成签到,获得积分10
25秒前
小康学弟完成签到 ,获得积分10
26秒前
文献发布了新的文献求助10
27秒前
36秒前
xc完成签到,获得积分10
36秒前
36秒前
逍遥自在完成签到,获得积分10
38秒前
sci完成签到 ,获得积分10
38秒前
XZZH完成签到,获得积分10
39秒前
风中书易完成签到,获得积分10
41秒前
FashionBoy应助Brave采纳,获得10
42秒前
亮仔发布了新的文献求助10
42秒前
Daisy完成签到 ,获得积分10
43秒前
超级大猩猩完成签到,获得积分10
46秒前
天天快乐应助通义千问采纳,获得10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780938
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227091
捐赠科研通 3041639
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734