Vertebrae Labeling via End-to-End Integral Regression Localization and Multi-Label Classification Network

模式识别(心理学) 人工智能 计算机科学 质心 人工神经网络 过程(计算) 回归 特征(语言学) 骨干网 数据挖掘 数学 统计 计算机网络 操作系统 语言学 哲学
作者
Chunli Qin,Ji Zhou,Demin Yao,Han Zhuang,Hui Wang,Shi-Yao Chen,Yonghong Shi,Zhijian Song
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2726-2736 被引量:12
标识
DOI:10.1109/tnnls.2020.3045601
摘要

Accurate identification and localization of the vertebrae in CT scans is a critical and standard pre-processing step for clinical spinal diagnosis and treatment. Existing methods are mainly based on the integration of multiple neural networks, and most of them use heatmaps to locate the vertebrae's centroid. However, the process of obtaining vertebrae's centroid coordinates using heatmaps is non-differentiable, so it is impossible to train the network to label the vertebrae directly. Therefore, for end-to-end differential training of vertebrae coordinates on CT scans, a robust and accurate automatic vertebral labeling algorithm is proposed in this study. First, a novel end-to-end integral regression localization and multi-label classification network is developed, which can capture multi-scale features and also utilize the residual module and skip connection to fuse the multi-level features. Second, to solve the problem that the process of finding coordinates is non-differentiable and the spatial structure of location being destroyed, an integral regression module is used in the localization network. It combines the advantages of heatmaps representation and direct regression coordinates to achieve end-to-end training and can be compatible with any key point detection methods of medical images based on heatmaps. Finally, multi-label classification of vertebrae is carried out to improve the identification rate, which uses bidirectional long short-term memory (Bi-LSTM) online to enhance the learning of long contextual information of vertebrae. The proposed method is evaluated on a challenging data set, and the results are significantly better than state-of-the-art methods (identification rate is 91.1% and the mean localization error is 2.2 mm). The method is evaluated on a new CT data set, and the results show that our method has good generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐橙橙发布了新的文献求助10
刚刚
刚刚
刚刚
干净的怜珊完成签到,获得积分10
1秒前
万能图书馆应助DrW采纳,获得30
1秒前
1秒前
1秒前
1秒前
兴奋的小虾米完成签到 ,获得积分10
1秒前
maaicui发布了新的文献求助20
3秒前
酷波er应助wsl采纳,获得10
4秒前
neurospine发布了新的文献求助10
4秒前
jituher发布了新的文献求助10
4秒前
hush完成签到,获得积分10
4秒前
lichun410932发布了新的文献求助10
4秒前
ABB应助坦率鱼采纳,获得20
4秒前
可爱的函函应助什么东西采纳,获得10
5秒前
科研通AI5应助小南采纳,获得10
5秒前
00发布了新的文献求助10
5秒前
tty615发布了新的文献求助10
5秒前
852应助seattle采纳,获得10
6秒前
6秒前
优秀冰真发布了新的文献求助10
6秒前
科研小白发布了新的文献求助10
7秒前
7秒前
许结朱陈完成签到 ,获得积分10
7秒前
7秒前
科研通AI6应助moyu123采纳,获得10
7秒前
小白完成签到,获得积分10
8秒前
深情安青应助DKY采纳,获得20
8秒前
科研通AI5应助嘎嘎顺利采纳,获得10
9秒前
paramecium86发布了新的文献求助10
10秒前
10秒前
启航完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
Whisper完成签到,获得积分20
11秒前
Jasper应助小懒猪采纳,获得10
12秒前
一忽儿左发布了新的文献求助10
14秒前
哈哈嘿完成签到 ,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4290261
求助须知:如何正确求助?哪些是违规求助? 3817506
关于积分的说明 11954740
捐赠科研通 3461217
什么是DOI,文献DOI怎么找? 1898475
邀请新用户注册赠送积分活动 946973
科研通“疑难数据库(出版商)”最低求助积分说明 849984