激子
离域电子
比克西顿
材料科学
波函数
电子
有机太阳能电池
半导体
化学物理
离解(化学)
有机半导体
原子物理学
凝聚态物理
分子物理学
物理
光电子学
化学
量子力学
物理化学
复合材料
聚合物
作者
Tika R. Kafle,Bhupal Kattel,Shanika Wanigasekara,Ti Wang,Wai‐Lun Chan
标识
DOI:10.1002/aenm.201904013
摘要
Abstract In organic semiconductors, optical excitation does not necessarily produce free carriers. Very often, electron and hole are bound together to form an exciton. Releasing free carriers from the exciton is essential for the functioning of photovoltaics and optoelectronic devices, but it is a bottleneck process because of the high exciton binding energy. Inefficient exciton dissociation can limit the efficiency of organic photovoltaics. Here, nanoscale features that can allow the free carrier generation to occur spontaneously despite being an energy uphill process are determined. Specifically, by comparing the dissociation dynamics of the charge transfer (CT) exciton at two donor–acceptor interfaces, it is found that the relative orientation of the electron and hole wavefunction within a CT exciton plays an important role in determining whether the CT exciton will decompose into the higher energy free electron–hole pair or relax to the lower energy tightly‐bound CT exciton. The concept of the entropic driving force is combined with the structural anisotropy of typical organic crystals to devise a framework that can describe how the orientation of the delocalized electronic wavefunction can be manipulated to favor the energy‐uphill spontaneous dissociation of CT excitons over the energy‐downhill CT exciton cooling.
科研通智能强力驱动
Strongly Powered by AbleSci AI